Web Automation Selenium 4.x
Notes - TheTestingAcademy (Pramod Sir

I] Mastering Web Automation with Selenium

IDE
1. Pycharm
2. Visual Studio Code

About Selenium

e Selenium Automates Web Browsers.

What is Selenium?

Selenium is an open-source suite.

Birth of WebDriver

Simon Stewart created WebDriver circa 2006 when browsers and web applications were

| becoming more powerful and more restrictive with JavaScript programs like Selenium
Core. It was the first cross-platform testing framework that could control the browser from
the OS level.

which can automate browsers

Selenium automates browsers. That's
it!

What you do with that power is entirely
up to you.

Selenium WebDriver

If you want to create robust, browser-
based regression automation suites and
tests, scale and distribute scripts across

many environments, then you want to use
Selenium WebDriver, a collection of
language specific bindings to drive a

browser - the way it is meant to be driven.

READ MORE »

History -

Selenium IDE

If you want to create quick bug
reproduction scripts, create scripts to aid in
automation-aided exploratory testing, then

you want to use Selenium IDE; a Chrome,
Firefox and Edge add-on that will do
simple record-and-playback of interactions
with the browser.

READ MORE *

Selenium Grid

If you want to scale by distributing and
running tests on several machines and
manage multiple environments from a
central point, making it easy to run the
tests against a vast combination of
browsers/OS, then you want to use
Selenium Grid.

READ MORE »

Selenium RC executed tests by injecting JavaScript code into the web browser being

automated. RC deprecated.

Email address

‘ admin@gmail.com ‘

Password

Forgot Password?

FECAPTCHA

I'm not a robot

["] Remember me

ik Lo Elements Console Sources Network Performance

D@ tpvy © Y Filter

Memory Ar

‘m Third-party cookie will be blocked in future Chrome versions as part of

> |document.getElementById("login-username").value ="admin@gmail.com";

Webdriver - Find the elements,

Selenium
Suite
’ : , T . 4 o 7., S
Selﬁ:;llisum SR?:Ienium WebDriver |
Mergfd_ ,L !
| Selenium

2

Selenium
3

New & Improved

https://www.browserstack.com/selenium#:~:text=First%20Selenium%20Test-,Selenium%3A%20A%20History,-A%20timeline%20of

|' Parl — p—

IEJ ‘_' Selenium WebDriver | C#

Objective-C) % \xx by |

Haskell — JovaScrion

Selenium vs Playwright vs Cypress

Compare Results -

https://blog.checklyhq.com/cypress-vs-selenium-vs-playwright-vs-puppeteer-speed-comparison/
https://blog.checklyhq.com/cypress-vs-selenium-vs-playwright-vs-puppeteer-speed-comparison/

Requirement/Tool Selenium Cypress Playwright
Established solution Yes Yes Yes
Has own runner/reporting No Yes Yes
Compatible v-vith other runners YVes No Ves
(Junit, Jest, ...)
Cross Domain Support Yes No Yes
Multi tab support Yes No Yes
Performance Good Good Best
Drag and Drop support Yes Yes Yes
Dynamic waits No Yes Yes
Static waits Yes Yes No

Element selector support

css, xpath, text

css, xpath, text

css, xpath, text

Yes (pro version or

Python

Parallel test execution Yes Sorry Cypress Yes
project)
Yes (videos only
Video recording, screenshots with 3rd party Yes Yes
tools)
Possibility to use as AWS Lambda Yes Yes Yes
Support for Java, JavaScript and Yes No Ves

Don’t use Selenium here

Few situations where you might not want to use Selenium for testing.
e Selenium is not well-suited for performance or load testing because it is
resource-intensive and can slow down the system under test.

When you need to test native mobile apps.
Selenium may have difficulty interacting with custom controls or non-standard Ul

elements.

Security Testing

Captcha / TWO-FACTOR AUTHENTICATION (2FA)
FILE DOWNLOADS & VERIFICATION.
AUDIO OR VIDEO STREAMING

API TESTING, mobile Appium is recommended.

https://www.pcloudy.com/blogs/testing-scenarios-you-should-avoid-while-automating-with-selenium/

Select all images with

crosswalks

Click verify once there are none left.

WebDriver Architecture

Before Selenium 4

a Selenium Webdriver Architecture

2. Driver Understand
English

1. You Give command 3. Driver Understand Your
to Taxi Driver wish and Start car and go
to the destination

4. Driver uses car to go to
destination

Selenium Binding (Java, C#, Python) -- Client
JSON Wire Protocol

B Selenium Webdriver Architecture

Browser Driver

JSON Wire Protocol

After Selenium 4.x (w3c)

They remove the JSON wire protocol

HTTP Server
) '
Language
Java,
oy JSON Wi Browser Real
o protoco Drivers Browsers
Python etc.
-~

HTTP Server

Now communicate directly to Browser via Browser Drivers.

Install Browser Drivers

Quick Reference

Browser Supported OS Maintained by

Chromium/Chrome Windows/macOS/Linux Google

Firefox Windows/macOS/Linux Mozilla

Edge Windows/macOS/Linux Microsoft
Internet Explorer Windows Selenium Project
Safari macOS High Sierra and newer Apple

Seleniurm WebDriver Architecture (W3C Protocol)

Browsers

Browser Drivers .‘.)

Selenium Script

Chrome Driver

-W3C —

Protocol e

Edge Driver

Safari Driver

Postman Collection -

https://api.postman.com/collections/611814-37f62772-042a-4e0d-bde8-488e26bf8be7?acce
ss key=PMAT-01H5E8RIJNFEVG8BE7CAB049ZFZ

HTTP OVER HTTP SERVER

BROWSER BROWSER

DRIVERS

Chrome Driver,
“m-- Firefox Driver,
Internet Explorer
Driver, Microsoft
Edge Driver,
Safari Driver

SELENIUM

CLIENT LIBRARIES
HTTP OVER HTTP SERVER

HTML elements

<input type="email" class="text-input W(100%)" name="username" id="login-username"
data-qa="hocewoqisi" pramod="dutta”>

HTML Tag - input
Attribute = value

https://www.w3schools.com/html/html_elements.asp

Selenium IDE

Open source record and playback test automation for the web
Selenide Language
Installation
Launch the IDE
Recording test
o Suite
o test
Command-line Runner
npm install -g selenium-side-runner

https://api.postman.com/collections/611814-37f62772-042a-4e0d-bde8-488e26bf8be7?access_key=PMAT-01H5E8RJNFEVG8BE7CAB049ZFZ
https://api.postman.com/collections/611814-37f62772-042a-4e0d-bde8-488e26bf8be7?access_key=PMAT-01H5E8RJNFEVG8BE7CAB049ZFZ
https://www.w3schools.com/html/html_elements.asp

npm install -g chromedriver
npm install -g geckodriver
Control Flow

Code Export

Selenium Grid (3,4.x)

Smart proxy server that makes it easy to run tests in parallel on multiple machines.
Major components of Selenium Grid.
Hub is a server that accepts the access requests from the WebDriver client, routing
the JSON test commands to the remote drives on nodes. It takes instructions from
the client and executes them remotely on the various nodes in parallel

e Note device that consists of a native OS and a remote WebDiriver. It receives
requests from the hub in the form of JSON test commands and executes them using
WebDriver

~ " NODES
.«
= @D
==X [0
) HUB! A
8 = oo = 0@
_, = « , = 4
— - " \ a0 i h
arese \\\ —= 09
Client e—) ?A

When to use Selenium Grid

e Multiple browsers and their versions.
e Reduce the time that a test suite takes to complete a test.
e Cross Browser Testing.

How to Start Selenium Grid

java -jar selenium-server-standalone-<version>.jar -role hub

java -jar selenium-server-standalone-<version>.jar -role node -hub
https:

capability.setBrowserName();
capability.setPlatform();
capability.setVersion()
capability.setCapability(,);

Selenium Grid 4

Router - Takes care of forwarding the request to the correct component.
Distributor - Its main role is to receive a new session request and find a suitable
Node where the session can be created.

e Node - Each Node takes care of managing the slots for the available browsers of the
machine where it is running.

e Session Map - Keeps the information of the session id and the Node where the
session is running
Event Bus - Event Bus serves as a communication path between the Nodes
The Grid does most of its internal communication through messages, avoiding
expensive HTTP calls

Different Grid Types

1. Standalone Mode
2. Classical Grid (Hub and Node like earlier versions)
3. Fully Distributed (Router, Distributor, Session, and Node)

Run Grid 4

Running in Standalone Mode (vs Distributed Mode)
java -jar selenium-server-4.0.0-alpha-6.jar standalone

Start the Hub:
java -jar selenium-server-4.0.0-alpha-6.jar hub

Register a Node:
java -jar selenium-server-4.0.0-alpha-6.jar node --detect-drivers

https://www.selenium.dev/documentation/en/grid/grid_4/setting_up_your_own_grid/

Distributor

Client

\i

Run Selenium on Docker

https://github.com/SeleniumHQ/docker-selenium

docker run -d -p 4444:4444 -v /dev/shm:/dev/shm
selenium/standalone-chrome:4.0.0-alpha-7-prerelease-20201009

Run on Cloud Service Providers - BrowserStack

https://www.browserstack.com/

Understanding Selenium API

h Jiwww.w3.ora/TR/w river

https://drive.google.com/drive/folders/1tYeAaBbvEGWptutWSz_pU6D0Opuaf22pp?usp=sharin
g

v Selenium API Understand *
GET Get Status
Create Session Step 1
DEL Delete Session Step 2
Navigate to Command
Maximize Window
Get Window

GET Get source

https://www.browserstack.com/
https://www.w3.org/TR/webdriver/
https://drive.google.com/drive/folders/1tYeAaBbvE6WptutWSz_pU6DOpuaf22pp?usp=sharing
https://drive.google.com/drive/folders/1tYeAaBbvE6WptutWSz_pU6DOpuaf22pp?usp=sharing

Virtual Env

Isolate the Python Environments
Main Parent - Global

o Prject basec Python version activate or deactivate the virtualenv

e How to Install
o Pip install virtualenv
o Virtualenv — help

o Optional - python -m pip install --user virtualenv

o

e Create the environment (creates a folder in your current directory)

o virtualenv env_name

e In Linux or Mac, activate the new python environment

o source env_name/bin/activate
e Orin Windows
o .\env_name\Scripts\activate
e Confirm that the env is successfully selected
o which python3
e Deactivate
o deactivate

Loqgging with Pytest

1. Add by importing the import logging.
2. Add the format in which the logs you want in two
a. Pytest.ini
b. Pyproject.toml
i. Add the format
3. Use the logger by
a. logging.getLogger(_ _name_)
b. logger.info(“String message”)

import logging

LOGGER = logging.getLogger(name)

driver.get ("https://www.google.com")

LOGGER.info('eggs info')
LOGGER.warning ('eggs warning')

LOGGER.error ('eggs error')
LOGGER.critical ('eggs critical')

Webdriver Hierarchy

WebDriver APl — The API is a set of classes and methods that allow you to interact with the
browser through code. The API allows running the tests on different browsers like Chrome,
Firefox, MS Edge, etc.

Selenium WebDriver Hierarchy

SearchContext

Extends

HasVirtualAuthenticator JavaScriptExecutor

WebDriver ‘ TakeScreenshot HasCapabilities

F A A b

PrintsPage Interactive
Implements Implements
7Y 7Y

|

RemoteWebDriver

v

l
e
<

Extends IExtends | Extends Extends

ChromiumDriver

FireFoxDriver |IEDriver SafariDriver

A

F s

Extends Extends

Chrome Driver EdgeDriver

API gives you access to browser controls like the navigation bar, back button, tabs, windows,
etc. You can also get information from the browser, such as the current URL and page
source.

Also, different actions like typing in a textbox and working with WebElements like
checkboxes, radio buttons, and dropdowns can be performed using WebDriver API.

ChromeDriver

The ChromeDriver class provides a number of methods for interacting with the Chrome
browser, such as get() for navigating to a specific URL, findElement() for locating elements
on a page, and click() for simulating a mouse click on an element. You can use these
methods to automate a variety of actions on the Chrome browser.

ChromeOptions

https://qgist.github.com/ntamvl/4f93bbb7c9b4829c601104a2d2f91fe5

import the ChromeOptions class from the org.openqga.selenium.chrome package
from selenium import webdriver

def test login():
chrome options = webdriver.ChromeOptions ()
chrome options.add argument ("--start-maximized")
driver = webdriver.Chrome (chrome options)
driver.get ("https://app.vwo.com")
print (driver.title)
driver.quit ()

chrome options = webdriver.ChromeOptions ()
chrome options.add argument ("--start-maximized")

https://gist.github.com/ntamvl/4f93bbb7c9b4829c601104a2d2f91fe5

pagelLoadStrategy

Strategy Ready State Notes

normal complete Used by default, waits for all resources to download
eager interactive DOM access is ready, but other resources like images may still be loading
none Any Does not block WebDriver at all

The document.readyState property of a document describes the loading state of the current document.

Proxy

A proxy server acts as an intermediary for requests between a client and a server. In simple,
the traffic flows through the proxy server on its way to the address you requested and back.

from selenium import webdriver

def test login():
chrome options = webdriver.ChromeOptions ()
chrome options.add argument ("--start-maximized")
Set PageLoadStrategy to 'none' (Not a built-in option,
but we can use 1t for reference)
Add the proxy to ChromeOptions
chrome options.add argument ("--page-load-strategy=none")

Add the proxy to ChromeOptions
proxy server = "http://your proxy ip:your proxy port"
chrome options.add argument ('--proxy-server=' + proxy server)

driver = webdriver.Chrome (options=chrome options)
driver.get ("https://app.vwo.com")

print (driver.title)

driver.quit ()

Remote WebDriver

Remote WebDriver consists of a server and a client. The server is a component that listens
on a port for various requests from a Remote WebDriver client.

from selenium import webdriver
from selenium.webdriver.common.desired_capabilities import
DesiredCapabilities

Create ChromeOptions instance
chrome_options = webdriver.ChromeOptions()

Add options to ChromeOptions (same as shown in the previous example)
chrome_options.add_argument('--headless"')
chrome_options.add_argument('--window-size=1366x768")

Set desired capabilities with ChromeOptions

desired_capabilities = DesiredCapabilities.CHROME.copy()
desired_capabilities['platform'] = 'ANY' # Platform can be 'WINDOWS',
"LINUX', etc.
desired_capabilities['version'] =
version like '91.0'

Version can be empty or specific

URL of the Remote WebDriver server
remote_server_url =
"http://<remote_server_ip>:<remote_server_port>/wd/hub"

Create Remote WebDriver instance
driver = webdriver.Remote(command_executor=remote_server_url,
desired capabilities=desired capabilities, options=chrome_options)

Navigate to the desired URL
driver.get("https://example.com")

Now you can interact with the web page using the specified options on
the Remote WebDriver

Remote WebDriver is commonly used in conjunction with a cloud-based testing service,
which allows for distributed testing across multiple machines and environments.

Difference Between Quit and Close in Selenium

Definition

Effect

Usage

Example

Quit

Closes all browser windows and ends the

WebDriver session
Ends the WebDriver session completely

Typically used at the end of a test suite or test

case

“driver.quit()"

Close

Closes the current browser window

Leaves the WebDriver session open

Typically used at the end of a single

test case

“driver.close()"

driver.close(); // Closed the window, Session id != null, Error - Invalid session Id
driver.quit(); / Closed All the window and Session = null, Error - Session ID is null

»)Navigation in Selenium

Refresh, forward, back
driver.get()

Navigation Control Commands

A

back()

forword()

refersh()

to()

Navigation commands in Selenium

get(String url) - This command is used to open a specific URL in the browser.

driver.get("https://www.example.com");
navigate().to(String url) - Not Exist in python

Refresh

Back

e forward

driver.back ()
driver.get ("https://www.bing.com")
print (driver.title)

driver.forward ()
print (driver.title)

driver.back ()
print (driver.title)
driver.refresh ()

time.sleep (5)

driver.quit()

/' Locators in Selenium

A locator is a way of identifying an element on a web page so that it can be interacted with.

There are several different types of locators that can be used, including:

e ID: This locator type uses the unique ID attribute of an element to locate it on the
page.

e Name: This locator type uses the name attribute of an element to locate it on the
page.

e Class name: This locator type uses the class attribute of an element to locate it on
the page.

e Tag name: This locator type uses the HTML tag name of an element to locate it on
the page.
Link text: This locator type uses the text of a link to locate it on the page.
Partial link text: This locator type uses part of the text of a link to locate it on the

page.

e CSS selector: This locator type uses a CSS selector to locate an element on the
page.
Xpath: This locator type uses an XPath expression to locate an element on the page.
When writing test scripts with Selenium, you can use a combination of these locator
types to accurately and reliably locate elements on the page.

find_element_by_id: Finds an element by its unique id attribute.
find_element_by_name: Finds an element by its name attribute.

find_element_by xpath: Finds an element using an XPath expression.
find_element_by_link_text: Finds an anchor element (a) by its visible text.
find_element_by partial_link_text: Finds an anchor element (a) by a partial match of

its visible text.

e find_element_by tag_name: Finds an element by its HTML tag name (e.g., "div",
"input", "a", etc.).
find_element_by class_name: Finds an element by its CSS class name.
find_element_by_css_selector: Finds an element using a CSS selector.

For multiple elements, you can use the plural versions of these functions.
e (e.g, find_elements_by id, find_elements_by name, etc.), which will return a list of
matching WebElement objects.

List of HTML Tags

o ¢l > » <cite> « <frameset> < <object> » <style»

» <IDOCTYPE> + ¢code> *» <hl1>to<h6> + » ¢<sub>

* <a» » <col> » <head> « <optgroup> ¢ <summary>
» <abbr» » ¢<colgroup> « <header> « <option>» e <sup>

» cacronym> e+ <data> s <hr> » <output> * <sSVQ>

» <address>» » <datalist>» « <html> . <p> » <table>

» <applet» » <dd» e <i> * <param» + <tbody»

* <area: » + <iframe> « <picture> o <td>

« carticle» » <details» e « <pre» « <template>»
» <aside> s <dfn> s <input> « <progress> « <textarea>
* <audio» » <dialog» * <ins>» °« <Q> » <tfoot>

e » o <dir> e <kbd> o <rp> o <th>

+ <base> o <div> » <label> o <rt> + <thead»>

» <basefont> « <dI> » <legend> e <ruby>» « <time>

» <bdi> + <dt> o . <S> » <title>

« <bdo> * <em? e <link> * <samp? o <tr»

» <big» * ¢<embed> e <main> e <script» » <track>

» <blockquote> » <fieldset> * <map> + ¢section> o <tt>

» <body> » <figcaption> < <mark> « ¢<select» * <u>

«
 » <figure»> « <meta> o <small> o

+ <button> » * <meter> * <source> * <var»

e <canvas> » <footer> e <nav> « * <video»

» <caption>» » <form»> » ¢<noframes> + <strike> * <wbr>

« <center> » <frame> e <noscript> «

tn | Faraz @ Not supported in HTML5

@Codewithfaraz

It uses "locators" to identify and manipulate elements on a web page. There are several

types of locators that can be used in Selenium, including:

<a EIBIRSREKESSPEOIRMENR hrof="./index.php#appointment" ElSSSEIBINBINIAN

BRI~ Make Appointment

1. ID: This locator uses the unique id attribute of an element to locate it. For example, if
the HTML for an element on the page looks like this: <div id="some-id">...</div>, you can
use the ID locator "#some-id" to find this element.

2. Name: This locator uses the name attribute of an element to locate it. For example, if
the HTML for an element on the page looks like this: <input name="username">, you can
use the Name locator "username" to find this element.

3. Class Name: This locator uses the class attribute of an element to locate it. For
example, if the HTML for an element on the page looks like this: <div
class="some-class">...</div>, you can use the Class Name locator ".some-class" to find this
element.

4. Link Text: This locator uses the visible text of a link element to locate it. For example,
if the HTML for a link on the page looks like this: VWO0, you can use the Link Text locator "vWO0" to find this
element.

5. Partial Link Text: This locator is similar to the Link Text locator, but it only matches a
portion of the link text. For example, using the Partial Link Text locator "vw0" would
match a link with the text "Welcome to VWO".

6. CSS Selector: This locator uses a CSS selector to locate an element. CSS selectors
are strings that specify how to find an element on a page based on its HTML
structure. For example, if the HTML for an element on the page looks like this: <div
class="some-class" id="some-id">...</div>, you can use the CSS selector
"div.some-class#some-id" to find this element.

7. XPath: This locator uses an XPath expression to locate an element. XPath is a
language for navigating and selecting elements in an XML document (including
HTML documents). It allows you to specify complex, hierarchical patterns for
locating elements on a page. For example, if you want to find all the <p> elements that
are descendants of the <div> element with the ID "some-id", you could use the XPath
expression "//div[@id='some-id’]/p" to find these elements.

These are the main types of locators that are used in Selenium. Which one you use will

depend on the specific elements you are trying to locate on the page, and the HTML

structure of the page itself.

[Assignment] - Automating the Login Page of VWO.com

1. Fetch the locators - https://app.vwo.com/
2. Create a Maven project and add TestNG.
3. Add the Allure Report (Allure TestNG)
4. Automate the two Test cases of VWO.com
a. Valid Username and Valid Password
Run them and share results.
Push the code to github.com
7. Gitrepo - ReadMe.md a Screen shot of allure.

o o

Understanding Locators and HTML Forms

Start tag Content
/ 4
<p class="foo">This is a paragrah. </p>
/ N\ /

Attribute value End tag

Tag
Attribute = Value

<input data-qa="hocewoqisi" type="email" class="text-input W(100%)"
name="username" id="login-username" >
<input data-qa="hocewoqisi" type="email" class="text-input W(100%)"

name="username2" id="login-username" >

data-ga="hocewoqisi"
type="email"
class="text-input W(100%)"
name="username"
id="login-username"

Preference
id -> name -> className -> Link Text / Partial Text(a) -> CSS Selector -> XPath.

XPath - 60%
CSS Selector - 30%
1D, Name, CLASS - 10%

Custom attribute it is not id, name, class -> Custom Attribute -
student = "praveen" , roll=123, phone="233", placeholder="dasda"
#data-ga="dasda" , testID="123"

findElement vs findElements

findElement() is @ method used to locate a single element on a web page. It takes a locator as

an argument, and returns the first matching element that it finds. For example:

usernameField = driver.findElement(By.ID, "username™));

In this example, findElement() is used to locate the element with the ID "username”. If it is

found, the element is returned and stored in the usernameField variable.

findElements() is similar to findElement(), but it returns a list of all matching elements instead of

just the first one. For example:

alllLinks = driver.findElements(By.TAGNAME("2a"));

In this example, findElements() is used to locate all <a> elements on the page. These elements

are returned in a list and stored in the allLinks variable.

It's important to note that if findElement() is used and no matching element is found, it will
throw a NoSuchElementException. On the other hand, if findElements() is used and no matching

elements are found, it will return an empty list.

What is an HTML Form?

A HTML form is a section of a web page that contains form elements, such as text fields,
checkboxes, and buttons. Forms allow users to enter data and interact with a website.

Forms are created using the <form> HTML tag. This tag defines the start and end of a form,
and it can have several attributes that determine how the form behaves.

For example, the action attribute specifies the URL of the server-side script that will process
the form data, and the method attribute specifies whether the form data will be sent to the
server using the GET or POST method.

<form action="http://www.example.com/form-handler.php" method="POST">
<label for="username">Username:</label>
<input type="text" id="username" name="username">

<label for="password">Password:</label>
<input type="password" id="password" name="password">

<input type="submit" value="Log In">
</form>

When the user enters their username and password and clicks the "Log In" button, the form
data will be sent to the server-side script at the URL specified in the action attribute
(http: using the POST method.

The server-side script can then process the form data and perform the desired action, such
as checking the user's credentials against a database and logging them in.

text Method

the getText() method is used to retrieve the text of an element on a web page. This method
can be called on an element, and it will return the text of the element, including any child
elements.

WebElement element = driver.findElement(By.id("some-id"));
String elementText = element.getText();

getAttribute() Method

the getAttribute() method is used to retrieve the value of an attribute of an element on a web
page.

element = driver.findElement(By.ID, "some-id");
element.getAttribute("class");

sendKeys

the sendKeys() method is used to enter text into a text field or text area on a web page

click()

the click() method is used to simulate a user clicking on an element on a web page

X SelectorsHub for the Locators

SelectorsHub is a tool that can be used to help identify and generate locators for elements
on a web page in Selenium

https://selectorshub.com/

[Assignment] - Invalid error message Capture for the Login Page of VWO.com

8. Fetch the locators - https://app.vwo.com/
9. Create a Python project and add pytest, alloure.
10. Add the Allure Report (Allure pytest)
11. Automate the two Test cases of VWO.com

a. Invalid Username and Valid Password.
12. Capture the error and pass the test.
13. Run them and share results.

Link Text locator.

the findElement() method is used with the By.linkText() locator to locate a link on the page
with the text "VWOQ". The element is then stored in the vwoLink variable.

The click() method is called on this element, which simulates the user clicking on the link

with their mouse. This will navigate the user to the URL specified in the href attribute of the
<a> element.

g Mastering XPath

https://selectorshub.com/

What is XPath?

XPath is a query language for selecting nodes from an HTML / XML document.
XPath was defined by the World Wide Web Consortium.

Core Logic - [ltagName[@attribute="value']

<input type="email" class="text-input W(100%)" name="username" id="login-username"
data-qa="hocewoqisi">

llinput[@data-ga="hocewoqisi"]
llinput[@id="login-username"]
llinput[@name="username"]

INi[@data-qa="rubehixixu"]/input

II"[@name="username"] - Slow way (* wild card) - search for all the tags with unique name
= usernmae

For Button

//button - all buttons - Not good
//button[@type="submit'] - 2 Elements
I/button[@id="js-login-btn'] - 1 Element
/Ibutton[@data-qa="sibequkica'] - 1 Element

TAG - h1, p, input, a, form, img, video, audio,button, table, ul, li, tr, div, select, span, -> Html
Tags

Attrbute - id, class, name, alt, href, src, data-qa,srcset ..

- Relative XPath
- Absolute XPath

- XPath Functions

Absolute XPath
- From the root
- Big problem - of on future any changes in html page
- Abs Xpath will break

/htmi/body/div2)/div[1]/div[2)/div/div[11/div/dividiv[3]/form[1)ul/li[1]/diviinput

Why do we need to MASTER Locators?

Probably the first question asked by the interviewer.

e You should always find small and efficient Locators.
e Ul Automation is all about finding locators.
e Don't use tools at first.

llinput[@id="login-password']/../

Expression Description

nodename Selects all nodes with the name “nodename"

/ Selects from the root node

I/ Selects nodes in the document from the current node that mat
they are

Selects the current node
Selects the parent of the current node

@ Selects attributes

Absolute XPath

1. Complete path from the Root Element.
2. If any element is added or deleted, Xpath fails.
3. /html/body/div[2)/div[1]/div[2)/div/div[1]/div/div/div[3])/form[1]/ul/li[1]/div/input

Relative Xpath

1. Short and simple to use.
2. You can simply start by referencing the element you want and go from there
Based on searching an element in DOM./*[@id="login-username"].

llinput[@id="login-username"]
Xpath -> //input[@id="txt-username"]

Css - > #ftxt-username

XPath Functions

e Known Attribute - //*[@id='btn-make-appointment’]

e TAG Name - //a[@id="btn-make-appointment']
e Xpath Function
o Full Visible text - text() - /a[text()="Make Appointment], //*[text()="Make
Appointment']
o Partial Text() - contains()
m //a[contains(text(),'Make Appointment')]
m //a[contains(text(),'Make")]
m //a[contains(text(),'Appointment")]
m //a[contains(text(),'App")] - This may fail if there 1 or more a tag with
App.
m //a[contains(@id, btn-make-appointment’)]
o [/la[starts-with(text(),'Make")]

Contains()
/ltag_name[contains(@attribute,'value_of attribute')]

Starts-with()

/ltag_name([starts-with(@attribute,'Part_of Attribute_value')]
Text()

/ltag_name][text()="Text of the element’]

String functions

concat(string, ...): XPath concat function concatenated number of arguments and return to a
concatenated string.

starts-with(string, string): XPath start-with function return True/False. Return True if second
argument string is start with first argument.

contains(string, string) - XPath contains function return True/False. Return True if second
argument string is a contain of first argument.
string-length(string): XPath string-length function return the length of string.

substring-after(string, string): XPath substring-after function return the substring of the first
argument string base on first occurrence of the second argument string after all character.

substring-before(string, string): XPath substring-before function return the substring of the
first argument string base on first occurrence of the second argument string before all

character.

normalize-space(string): XPath normalize-space function sequence of whitespace combine
into single normalize space and removing leading and trailing whitespace.

https://katalon-demo-cura.herokuapp.com/

https://katalon-demo-cura.herokuapp.com/

<h3>We Care About Your Health</h3=>

see <a id="btn-make-appointment" href="./profile.php#login" class="btn
btn-dark btn-1g" xpath="1"> Make Appointment == %@
</div>
</header=>
<!-— Footer --—>

> <footer> - </footer>
<script src="https://cdnjs.cloudflare.com/ajax/libs/jquery/1.11.3/jqu
ery.min. js"=</script>
« #top.header div.text-vertical-center a#btn-make-appointment.btn.btn-dark.btn-Ig

//a[normalize-space()="Make Appointment"] Tof1 A~ v Cancel

SelectorsHub Stvles Comnuted Lavout Event Listenars >%

Operators - AND & OR

And Example
/ltag_name[@name = 'Name value' and @id = ‘ID value’]

https://katalon-demo-cura.herokuapp.com/

/la[text()="Make Appointment" and contains(@id,"btn-make-appointment")]

OR Example
llinput[@placeholder ='Full Name' or @type = 'text']

Operator Description
| Computes two node-sets
+ Addition

- Subtraction

* Multiplication
div Division
= Equal

= Mot equal

< Less than

<= Less than or equal to

> Greater than

> = Sreater than or equal to
or or

and and

maod Modulus {(division remainder)

https://katalon-demo-cura.herokuapp.com/

XPath Axes

In the XML documents, we have relationships between various nodes to locate those nodes
in the DOM structure.

Ancestor

Child, parent

Descendant

Following, following-sibling

XPath Axes

» Ancestor

Parent

" Following-sibling

4

Vertebrate Invertebrate

v Context Node (Self)

m m [insect] [crustacean]

[Herbivore] [Camivore] ¥ child

https://awesomeqa.com/xpath/

v
Preceding-sibling
Lion Tiger

* Descendent

XPath Axes

Illdiv[@class='"Mammal‘]/ancestor::div[@class="Animal’]

» Ancestor

lldiv[@class="Mammal']/ancestor-or-self::div
lidiv[@class="Animal’]/descendant-or-self::div

Invertebrate

Parent
»

Following-sibling

Vertebrate

v Context Node (Self)

[Insect] [crustacean]

lldiv[@class="Vertebrate"]/ancestor::div

lidiv[@class= 1 ing-si
lldiv[@class="Mammal']/child::div [Hemiw’e] [Camwo,e] > child httDS://awesomeqa.com/xpath/
v
Preceding-sibling
m -ﬂger

* Descendent
lldiv[@class= Jchild::div[@class="t i "]/h5

TheTestingAcademy.com

AxisName
ancestor

ancestor-or-self

attribute
child
descendant

descendant-or-self

following
following-sibling
namespace
parent

preceding

preceding-sibling

self

Result
Selects all ancestors (parent, grandparent, etc.) of the current node

Selects all ancestors (parent, grandparent, etc.) of the current node and the
current node itself

Selects all attributes of the current node
Selects all children of the current node
Selects all descendants {children, grandchildren, etc.) of the current node

Selects all descendants (children, grandchildren, etc.) of the current node and
the current node itself

Selects everything in the document after the closing tag of the current node
Selects all siblings after the current node

Selects all namespace nodes of the current node

Selects the parent of the current node

Selects all nodes that appear before the current node in the document, except
ancestors, attribute nodes and namespace nodes

Selects all siblings before the current node

Selects the current node

https://www.softwaretestinghelp.com/xpath-axes-tutorial/

/Ispan[text()="Invalid Emaill/ancestor::div
/I"[@id="main-page"])/div[1]/child::div

/I*[@id="js-main-container-wrap"]/child::div
II*[@id="js-main-container-wrap"]/following::div

h : vhints.io/xpath

https://www.softwaretestinghelp.com/xpath-axes-tutorial/
https://devhints.io/xpath

iiiApps [vB BH YT N Q © YT @ ChatGPT P Anydo 32w E5 TTA B _Un

@ Dashboard

@ Dashboard

Hi aman asdasd, here's an overview of your experience optimization journey
Testing

; A/B

‘D Goals @

¢ Multivariate

Split URL

30%
Insights

© Personalize

P Deploy

Conversion Rate

Data360

Elements Console Recorder & Performance insights

Filter
> //x[@id="main-container"]/div/div/div[1]/div[1]/h1
(.
> $x('//*[@id="main-container"]/div/div/div[1]/div[1]/h1"');

< v [hl.page—heading]
v 0: hl.page-heading
nlsNodeId: 4399

accessKey:
align: ""

I. Master CSS Selectors

CSS selectors are used to select elements in an HTML or XML document in order to apply
styles or other manipulations to those elements.

CSS Attribute Selector CSS 1Id Selector

..Q

CSS Element Selector CSS Class Selector

CSS Universal Selector

CSS Selectors?

#id Demo https://awesomeqga.com/css/
.class

div.first > span

li:nth-of-type(even)
div.first > span:nth-child(3)
Direct Child Selector > p > span

div.first > span:nth-child(2n+1)
Wildcard Selectors (*, » and $) in CSS

div.first > span:nth-of-type(2n+1) [attribute*="str"] Selector:
div.first > span:first-child e *contains.

e begins with
div.first > span:last-child e $ends with

CSS selectors allow you to select elements based on their tag name, id, class, attribute, and
other characteristics.
e To select all elements with the tag "p" (paragraph), you could use the following
selector: p
e To select an element with the ID "main-heading", you could use the following
selector: #main-heading
e To select all elements with the class "error", you could use the following selector:
.error
e To select all elements with the attribute "disabled", you could use the following
selector: [disabled]
e To select all "a" elements that are descendants of a "nav" element, you could use the
following selector: nav a

form#login-form input[type="radio"]

CSS [attribute*=value] Selector

The [attribute*="str"] selector is used to select those elements whose attribute value contains
the specified substring str.

CSS [attribute=value] Selector
The [attribute=value] selector in CSS is used to select those elements whose attribute value
is equal to “value”.

CSS [attribute$=value] Selector The [attribute$="value”] selector is used to select those
elements whose attribute value ends with a specified value “value”.

CSS [attribute|=value] Selector This is used to select those elements whose attribute
value is equal to “value” or whose attribute value started with “value” immediately followed
by hyphen (-).

CSS [attribute~=value] Selector The [attribute~="value”] selector is used to select those
elements whose attribute value contains a specified word.

CSS [attribute®=value] Selector The [attribute*=value] selector is used to select those
elements whose attribute value begins with given attribute.

CSS :first-child Selector The :first-child selector is used to select those elements which
are the first-child elements.

CSS :last-child Selector The :last-child Selector is used to target the last child element
of it's parent for styling.

CSS :nth-child() Selector The :nth-child() CSS pseudo-class selector is used to match
the elements based on their position in a group of siblings.

CSS :nth-of-type() Selector The :nth-of-type() in css Selector is used to style only those
elements which are the nth number of child of its parent element.

4 Selenium Waits

Why Do We Need Waits In Selenium?

Web applications are developed using Ajax and Javascript.
New JS frameworks are more advanced and use AJax, react, and angular.
elements which we want to interact with may load at different time intervals.

Waits in Selenium

Implicit Wait Explicit Wait Fluent Wait

Implicit Wait

Selenium Web Driver has borrowed the idea of implicit waits from Watir.

If the element is not located on the web page within that time frame, it will throw an
exception.

WebDriver polls the DOM for a certain duration when trying to find any element.
Global settings applicable to all elements

It tells the web driver to wait for the x time before moving to the next command.
Gives No Such Element Exception.

Once it is set it is applicable to full automation script.

Implicit wait is maximum time between the two commands.

Different from time.sleep - time.sleep() - It will sleep time for script/ Py Int.

Not good way to use it in script as it's sleep without condition.

Do not mix implicit and explicit waits. Doing so can cause unpredictable wait times.

from selenium import webdriver

driver = webdriver.Chrome()
driver.implicitly wait(1@) # Wait up to 10 seconds for elements to
appear

driver.get("https://example.com")

Explicit Wait

Explicit Wait in Selenium is used to tell the Web Driver to wait for certain conditions
(Expected Conditions) or maximum time exceeded before throwing
“ElementNotVisibleException” exception

e Little intelligent wait, wait for certain conditions.

e They allow your code to halt program execution, or freeze the thread, until the
condition you pass it resolves.

e The condition is called with a certain frequency until the timeout of the wait is

Elapsed.

e This means that for as long as the condition returns a falsy value, it will keep trying
and waiting.

e |t provides better way to handle the dynamic Ajax elements

e Element not visible exception if element not found.

e Good fit for synchronizing the state between the browser and its DOM, and your.

e Replace Thread.sleep / time.sleep() with explicit wait always

from selenium import webdriver

from selenium.webdriver.common.by import By

from selenium.webdriver.support.ui import WebDriverWait

from selenium.webdriver.support import expected conditions as EC

driver = webdriver.Chrome()
driver.get("https://example.com")

Wait up to 10 seconds until an element with ID 'some-element' becomes
visible - 2 ->

element = WebDriverWait(driver, 10).until(
EC.visibility of element_located((By.ID, 'some-element'))

The following are the Expected Conditions that can be used in Selenium Explicit Wait
Expected Conditions for Waiting:
You can use various expected conditions with explicit waits, such as:

e visibility_of element_located: Wait for an element to become visible.
e element_to_be_clickable: Wait for an element to be clickable.

e presence_of element_located: Wait for an element to be present in the DOM.
e text to _be present in_element: Wait for specific text to be present in an element.
e title_contains: Wait for the page title to contain a specific text.

[Assignment] Fix the VWO login page with the heading page visibility, Use Expected
Condition

Fluent Wait

Fluent Wait instance defines the maximum amount of time to wait for a condition as well as
the frequency with which to check the condition
- Exception - NoSuchElementException
- Waiting 30 seconds for an element to be present on the page, checking for its
presence once every 5 seconds.

from selenium import webdriver

from selenium.webdriver.common.by import By

from selenium.webdriver.support.ui import WebDriverWait

from selenium.webdriver.support.ui import FluentWait

from selenium.webdriver.support import expected conditions as EC

driver = webdriver.Chrome()
driver.get("https://example.com")

wait = FluentWait(driver, timeout=30, polling frequency=5,
ignored_exceptions=[NoSuchElementException])

element = wait.until(EC.presence_of_element_located((By.ID,
"some-element')))

https://www.selenium.dev/
documentation/en/webdriver/
waits/

Ref - https://www.guru99.com/implicit-explicit-waits-selenium.html

https://www.guru99.com/implicit-explicit-waits-selenium.html

Implicit Wait

e Implicit Wait time is applied to all the
elements in the script

e In Implicit Wait, we need not specify
“ExpectedConditions” on the
element to be located

e |tis recommended to use when the
elements are located with the time
frame specified in Selenium implicit

Explicit Wait

Explicit Wait time is applied only to those element
by us

In Explicit Wait, we need to specify “ExpectedCor
element to be located

It is recommended to use when the elements are
load and also for verifying the property of the eler
like(visibilityOfElementLocated,

wait elementToBeClickable,elementToBeSelected)
Selenium Waits
| I
Implicit Explicit
|
Dyanamic Wait |]
| Static Wait | Dyanamic Wait
ImplicitlyWait

Thread.sleep() = :

PagelLoadTimeOut WebDriver Wait

Fl t Wait
SetScriptTimeOut =

Select Demo, Static and Dynamic Dropdowns

Handling Static Dropdowns

https://the-internet.herokuapp.com/dropdown

https://the-internet.herokuapp.com/dropdown

Dropdown List

Option 1
Option 2

Handling Dynamic Dropdowns
1. We will use the XPath axes.
2. We will use the advanced css selectors for the same.
3. Traditional select classes won't work.

Alert in Selenium

An alert is a small window that appears on top of a web page and displays a message to the
user. Most of the time, alerts are used to show important information or ask the user for
something.

https://the-internet.herokuapp.com/javascript alerts

Prompt Alert
. i
the-internet.herckuapp.com says
| am a JS Alert
Confirmation Alert
i

the-internet.herokuapp.com says

| am a JS Confirm

https://the-internet.herokuapp.com/javascript_alerts

the-internet.herockuapp.com says

| am a JS prompt

S

Handle Alert in Selenium WebDriver

ion

from selenium import webdriver

from selenium.webdriver.support.ui import WebDriverWait
from selenium.webdriver.support.expected_conditions import
alert_is_present

Initialize the Chrome WebDriver
driver = webdriver.Chrome()

Navigate to a web page that displays an alert
driver.get("http://example.com/page-with-alert")

Wait for the alert to appear
wait = WebDriverWait(driver, 10)
wait.until(alert_is_present())

Now you can interact with the alert using the driver.switch_to.alert
method
alert = driver.switch_to.alert

For example, accept the alert
alert.accept()

Or dismiss the alert
alert.dismiss()

After interacting with the alert, you can continue with the rest of
your test script
...

Don't forget to close the browser when you are done
driver.quit()

1) void dismiss() // To click on the ‘Cancel’ button of the alert.

2) void accept()// To click on the ‘OK’ button of the alert.

3) String getText() // To capture the alert message.

4) void sendKeys(String stringToSend) // To send some data to alert box.

from selenium import webdriver
from selenium.webdriver.common.alert import Alert

Initialize the Chrome WebDriver
driver = webdriver.Chrome()

Navigate to a web page that displays an alert
driver.get("http://example.com/page-with-alert")

Switch to the alert
alert = Alert(driver)

Send keys (input text) to the alert
alert.send_keys("Text")

Continue with the rest of your test script...

Handling Checkboxes and Handling Radio Buttons

Checkboxes and radio buttons are types of form elements that allow users to make multiple
selections or choose a single option from a group of options.

from selenium import webdriver
from selenium.webdriver.common.by import By

Initialize the Chrome WebDriver
driver = webdriver.Chrome()

Navigate to the web page containing checkboxes
driver.get("http://example.com/page-with-checkboxes")

Find all checkbox elements using CSS selector
checkboxes = driver.find elements(By.CSS_SELECTOR,
"input[type='checkbox']")

Iterate through the checkbox elements
for checkbox in checkboxes:
Check the checkbox if it is not already checked
if not checkbox.is selected():
checkbox.click()

Continue with the rest of your test script...

Web Table in Selenium

What is a Web Table?
A web table is a way of representing data in rows and columns.
"<table>" - It defines a table. You can also say that it's the starting point of a table.

<thead>
<tbody>

"<th>" - It defines a header cell, which means you should define your headings inside th tag.
"<tr>" - It defines a row in a table.
"<td>" - It defines a cell in a table. "td" always lie inside the tr tag.

//table[@Rid="customers"]
/ltable[contains(@id,"cust")]

Example -
https://awesomega.com/webtable.html

https://awesomeqa.com/webtable.html

Company Contact Country
Google Maria Anders Germany
Meta Francisco Chang Mexico
Microsoft Roland Mendel Austria
Island Trading Helen Bennett UK
Adobe Yoshi Tannamuri Canada

Amazon Giovanni Rovelli Italy

Static Table - Data will not change.

Dynamic Table - No of Col may change.

selenium webdriver

driver = webdriver.Firefox()

URL = "https://awesomeqga.com/webtable.html"
driver.get(URL)
driver.maximize_window()

row_elements =

driver.find_elements_by xpath("//table[@id="'customers’]/tbody/tr")

col _elements =
driver.find_elements by xpath("//table[@id="'customers']/tbody/tr[2]/td")

row = len(row_elements)
col = len(col elements)

print(row)
print(col)

first part = "//table[@id="'customers']/tbody/tr["
second _part = "]/td["
third_part = "]"

range(2, row + 1):
J range(1l, col + 1):
dynamic_xpath = f"{first_part}{i}{second_part}{j}{third_part}"
data = driver.find element by xpath(dynamic_xpath).text
print(data, end=" ")
print()

range(2, row + 1):
J range(1l, col + 1):
dynamic_xpath = f"{first_part}{i}{second_part}{j}{third_part}"
data = driver.find_element_by xpath(dynamic_xpath).text
"Helen Bennett" data:

country_path = f"{dynamic_xpath}/following-sibling::td"

country text = driver.find element by xpath(country path).text
Il)

print(f"Helen Bennett is in - {country_text}")

prant (" [TITTTTTEETEETTETTETTTT \n™)

driver.get("https://awesomeqga.com/webtablel.html")

table = driver.find_element_by xpath("//table[@summary="Sample
Table']/tbody")
rows_table = table.find_elements_by tag name("tr")

row_element rows_table:

columns_table = row_element.find_elements_by tag name("td")
element columns_table:
print(element.text)

driver.quit()

Actions, Windows and iframe.

Actions class is an ability provided by Selenium for handling keyboard and mouse events.

e Keyboard Events
e Mouse Events
e \Wheel Mouse

from selenium.webdriver.common.action chains import
ActionChains

actions = ActionChains (driver)

actions.key down (Keys.SHIFT)\
.send keys to element (FIRSTNAME, "the testing academy")\

.key up (Keys.SHIFT)\

.perform()

Methods of Action Class
Action class is useful mainly for mouse and keyboard actions. In order to perform such
actions, Selenium provides various methods.

Mouse Actions in Selenium:

1. Perform Mouse Hover Action on the Web Element

2. moveToElement(live).build().perform();

3. doubleClick(): Performs double click on the element

4. clickAndHold(): Performs long click on the mouse without releasing it

5. dragAndDrop(): Drags the element from one point and drops to another

6. moveToElement(): Shifts the mouse pointer to the center of the element

7. contextClick(): Performs right-click on the mouse Keyboard Actions in Selenium
8. sendKeys(): Sends a series of keys to the element

9. keyUp(): Performs key release

10. keyDown(): Performs keypress without release.

import pytest

from selenium import webdriver

from selenium.webdriver.common.keys import Keys
from selenium.webdriver.common.action chains import
ActionChains

from selenium.webdriver.common.by import By

@pytest.mark.actions
def test 01 actions():

driver = webdriver.Firefox/()

URL = "https://awesomeqga.com/practice.html"
driver.get (URL)
driver.maximize window ()

FIRSTNAME = driver.find element (By.NAME, "firstname")

actions = ActionChains (driver)

actions.key down (Keys.SHIFT)\
.send keys to element (FIRSTNAME, "the testing
academy") \
.key up (Keys.SHIFT)\
.performy()

date = driver.find element (By.ID, "datepicker")
actions.send keys to element (date,
"23/12/2025") .perform/()

link = driver.find element (By.XPATH,
"//a[contains (text (), 'Click here to Download File')]")
actions.context click(link) .perform()

driver.quit ()

if name == " main ":

pytest.main([file 1)

Keyboard Events

KeyDown(KeyCode) - Performs key press without releasing it.

ActionChains(driver)\
.key down(Keys.SHIFT)\
.send_keys("abc")\
.perform()

KeyUp(KeyCode) - Performs a key release. It has to be used after keyDown to release the
key.

ActionChains(driver)\
.key_down(Keys.SHIFT)\
.send_keys("a")\
.key_up(Keys.SHIFT)\
.send_keys("b")\
.perform()

Send Keys

ActionChains(driver)\
.send_keys("abc")\
.perform()

Send to Element

text_input = driver.find_element(By.ID, "textinput")
ActionChains(driver)\
.send_keys_to_element(text_input, "abc")\
.perform()

Copy and Paste

cmd_ctrl = Keys.COMMAND if sys.platform == 'darwin' else Keys.CONTROL

ActionChains(driver)\
.send_keys("Selenium!")\
.send_keys (Keys.ARROW_LEFT)\
.key_down(Keys.SHIFT)\
.send_keys (Keys.ARROW_UP)\
.key_up(Keys.SHIFT)\
.key_down(cmd_ctrl)\
.send_keys ("xvv")\
.key_up(cmd_ctrl)\
.perform()

Mouse actions

Click and hold
Click and release
Context Click
Back Click
Double click
Move to element
Move by offset

Drag and Drop

With Action or with Function

String URL = "https://the-internet.herokuapp.com/drag_and_drop";
driver.get(URL);
driver.manage().window().maximize();
//Actions class method to drag and drop
Actions builder = new Actions(driver);
WebElement from = driver.findElement(By.id("column-a"));
WebElement to = driver.findElement(By.id("column-b"));
//Perform drag and drop
builder.dragAndDrop(from,to).perform();

Scroll wheel actions

Scroll to element

Scroll by given amount

Scroll from an element by a given amount
Scroll from an element with an offset

File Upload

from selenium import webdriver

from selenium.webdriver.common.by import By

from selenium.webdriver.chrome.options import Options
from selenium.webdriver.common.keys import Keys

Set Chrome options
options = Options()
options.page load strategy = 'normal’

Initialize the Chrome driver with options
driver = webdriver.Chrome(options=options)

URL for the web page

URL = "https://awesomeqga.com/selenium/upload.html”
driver.get(URL)

driver.maximize window()

upload_file = driver.find_element(By.XPATH,
"//input[@id="fileToUpload']")
upload_file.send_keys("/Users/pramod/Documents/Course/apitesting.jpeg")

driver.find_element(By.NAME, "submit").click()

Quit the driver
driver.quit()

Window:

In any browser, a window is the main webpage to which the user is directed after clicking on
a link or URL. Such a window in Selenium is referred to as the "parent window also known
as the main window which opens when the Selenium WebDriver session is created and has
all the focus of the WebDriver.

pytest
selenium webdriver
selenium.webdriver.common.by

test 01 windows(driver):

driver.get("https://the-internet.herokuapp.com/windows")

main_window_handle = driver.current_window_handle

link = driver.find_element(By.LINK TEXT, "Click Here")

link.click()

window_handles = driver.window_handles

handle window_handles:

driver.switch_to.window(handle)

"New Window" driver.page source:
print("The text 'New Window' was found in the new window.")

driver.switch_to.window(main_window_handle)

__name__ == "_main__ ":
pytest.main([__file])

IFRAME

An iframe (short for inline frame) is an HTML element that allows you to embed another
HTML document within the current document. Iframes are often used to embed videos,
advertisements, or other external content on a webpage.

1.

2. By Index

3. By Name orld

4. By Web Element

driver.switch to.frame('buttonframe’)

driver.find_element(By.TAG_NAME, ‘'button').click()

--J---'hr?lllfhil'fﬁfﬂJIIE

|

Iframel | b o ter frame

element1

element2 Hraie?

[Assignment] Open HEATMAP of vwo.com and Click on iframe Click map
ActionClass, Iframew, Windows

1. Open this link with webdriver
https://app.vwo.com/#/analyze/osa/13/heatmaps/1?token=eyJhY2NvdW50X2Ikljo2N;j
YOMDAsImV4cGVyaW1lbnRfaWQIiQjEzlL CJjcmVhdGVkX29uljoxNjexMjA1MDUwLCJ
0eXBlljoiY2FtcGFpZ24iLCJ2ZXJzaWuljoxLCJoYXNoljoiY2IwNzBiYTc5MDM1MDI2

N2QxNTM5MTBhZDE1MGU1YTUILCJZzY29wZSI6lilsimZybil6ZmFsc2V9&isHttpsOnl
y=1

2. Use Action to MOVE the mouse to View Heatmap and Click on it.

3. Switch the Window and Switch to iframe

4. Click on button Click Map in the iframe of heatmap.

Solution

import time

pytest
selenium webdriver
selenium.webdriver.common.by By
selenium.webdriver.common.action_chains ActionChains

driver():
driver = webdriver.Chrome()

https://app.vwo.com/#/analyze/osa/13/heatmaps/1?token=eyJhY2NvdW50X2lkIjo2NjY0MDAsImV4cGVyaW1lbnRfaWQiOjEzLCJjcmVhdGVkX29uIjoxNjcxMjA1MDUwLCJ0eXBlIjoiY2FtcGFpZ24iLCJ2ZXJzaW9uIjoxLCJoYXNoIjoiY2IwNzBiYTc5MDM1MDI2N2QxNTM5MTBhZDE1MGU1YTUiLCJzY29wZSI6IiIsImZybiI6ZmFsc2V9&isHttpsOnly=1
https://app.vwo.com/#/analyze/osa/13/heatmaps/1?token=eyJhY2NvdW50X2lkIjo2NjY0MDAsImV4cGVyaW1lbnRfaWQiOjEzLCJjcmVhdGVkX29uIjoxNjcxMjA1MDUwLCJ0eXBlIjoiY2FtcGFpZ24iLCJ2ZXJzaW9uIjoxLCJoYXNoIjoiY2IwNzBiYTc5MDM1MDI2N2QxNTM5MTBhZDE1MGU1YTUiLCJzY29wZSI6IiIsImZybiI6ZmFsc2V9&isHttpsOnly=1
https://app.vwo.com/#/analyze/osa/13/heatmaps/1?token=eyJhY2NvdW50X2lkIjo2NjY0MDAsImV4cGVyaW1lbnRfaWQiOjEzLCJjcmVhdGVkX29uIjoxNjcxMjA1MDUwLCJ0eXBlIjoiY2FtcGFpZ24iLCJ2ZXJzaW9uIjoxLCJoYXNoIjoiY2IwNzBiYTc5MDM1MDI2N2QxNTM5MTBhZDE1MGU1YTUiLCJzY29wZSI6IiIsImZybiI6ZmFsc2V9&isHttpsOnly=1
https://app.vwo.com/#/analyze/osa/13/heatmaps/1?token=eyJhY2NvdW50X2lkIjo2NjY0MDAsImV4cGVyaW1lbnRfaWQiOjEzLCJjcmVhdGVkX29uIjoxNjcxMjA1MDUwLCJ0eXBlIjoiY2FtcGFpZ24iLCJ2ZXJzaW9uIjoxLCJoYXNoIjoiY2IwNzBiYTc5MDM1MDI2N2QxNTM5MTBhZDE1MGU1YTUiLCJzY29wZSI6IiIsImZybiI6ZmFsc2V9&isHttpsOnly=1
https://app.vwo.com/#/analyze/osa/13/heatmaps/1?token=eyJhY2NvdW50X2lkIjo2NjY0MDAsImV4cGVyaW1lbnRfaWQiOjEzLCJjcmVhdGVkX29uIjoxNjcxMjA1MDUwLCJ0eXBlIjoiY2FtcGFpZ24iLCJ2ZXJzaW9uIjoxLCJoYXNoIjoiY2IwNzBiYTc5MDM1MDI2N2QxNTM5MTBhZDE1MGU1YTUiLCJzY29wZSI6IiIsImZybiI6ZmFsc2V9&isHttpsOnly=1

driver

driver.quit()

test 02 windows actions_complex(driver):

URL =
"https://app.vwo.com/#/analyze/osa/13/heatmaps/1?token=eyJhY2NvdW50X21kI

j02NjYOMDAS ImV4cGVyaWllbnRfaWQiOjEzLCIjcmVhdGVkX29uIjoxNjcxMjAIMDUWLCIOe
XB1lIjoiY2FtcGFpZ24ilCJ2ZXJzaW9uIjoxLCIJoYXNoIjoiY2IwNzBiYTc5MDM1IMDI2N2QxN

TM5MTBhZDEIMGU1YTU1LCIZzY29wZSI6IiIsImZybiI6ZmFsc2V9&isHttpsOnly=1"

driver.get(URL)
driver.maximize window()

mainWindowHandle = driver.current_window_handle

ac = ActionChains(driver)
ac.move_to_element(driver.find_element(By.CSS_SELECTOR,

"[data-qga="yedexafobi']")).click().perform()

time.sleep(20)

window_handles = driver.window_handles

handle window_handles:
mainWindowHandle != handle:
driver.switch_to.window(handle)
driver.switch_to.frame("heatmap-iframe")
driver.find_element(By.CSS_SELECTOR,

"[data-qa="liqokuxuba']").click()

__name__ == "_main__ ":
pytest.main([__file])

JavaScript executor -

The JavaScript Executor is a feature of the Selenium WebDriver that allows you to execute
JavaScript code within the context of the current page.

This can be useful for interacting with elements on the page that are not directly accessible
through the Selenium API, or for bypassing certain limitations of the Selenium API.

Here are some common functions that you can use with the JavaScript Executor in
Selenium:

arguments[0].click(): This function clicks on the element specified as the first
argument.

arguments[0].scrollintoView(): This function scrolls the element specified as the
first argument into view.

arguments[0].setAttribute(arguments[1], arguments[2]): This function sets the
attribute specified by the second argument to the value specified by the third
argument for the element specified as the first argument.
arguments[0].innerHTML = arguments[1]: This function sets the inner HTML of the
element specified as the first argument to the value specified by the second
argument.

return arguments[0].value: This function returns the value of the element specified
as the first argument.

return arguments[0].style.display: This function returns the display style of the
element specified as the first argument.

What can you do?

JavaScriptExecutor provides two methods “executescript’ & “executeAsyncScript” to
handle.

Executed the JavaScript using Selenium Webdriver.

lllustrated how to click on an element through JavaScriptExecutor, if selenium fails to
click on element due to some issue.

Generated the ‘Alert’ window using JavaScriptExecutor.

Navigated to the different page using JavaScriptExecutor.

Scrolled down the window using JavaScriptExecutor.

Fetched URL, title, and domain name using JavaScriptExecutor.

Dynamic Elements

let's say ‘id’ of a username field is ‘uid_123’

Class="abc-kkj3k2jk3j2"
id="web-2323sdsdsd”
Use any of the Techq.

[contains(@id, uid’)]”
/*[starts-with(@id, uid’)]
Relative Locators
Xpath Axes

e Custom CSS Selectors

Project CRM

1. Login with the Credential -
https://opensource-demo.orangehrmlive.com/web/index.php/auth/login

2. Add user
https://opensource-demo.orangehrmlive.com/web/index.php/admin/saveSystemUser

3. Search User

Selenium Exception

https://opensource-demo.orangehrmlive.com/web/index.php/admin/saveSystemUser

Throwable

SELENIUM
EXCEPTIONS

Error Exception

RuntimeException

!

WebDriverException

7 \

NoSuchSessionException NotFoundException

NotFoundException I
ScreenshotException NoAlertPresentException
SessionNotCreatedException, NoSuchContextException

StaleElementReferenceException NoSuchCookieException
TimeoutException NoSuchElementException

NoSuchFrameException
NoSuchWindowException

NoSuchElementException: This exception is thrown when the web driver is unable to
locate an element on the page using the specified search criteria.

NoSuchFrameException: This exception is thrown when the web driver is unable to switch
to a specified frame.

NoAlertPresentException: This exception is thrown when the web driver is unable to find
an alert box on the page.

ElementNotVisibleException: This exception is thrown when the web driver is unable to
interact with an element that is not visible on the page.

ElementNotinteractableException: This exception is thrown when the web driver is unable
to interact with an element that is not enabled or not displayed.

StaleElementReferenceException: This exception is thrown when the web driver is unable
to interact with an element that has been modified or removed from the DOM after it was

located.

TimeoutException: This exception is thrown when the web driver times out while waiting for
an element to be located or an action to be performed.

WebDriverException: This is a general exception that is thrown when an error occurs while
interacting with the web driver.

- Waits

- Try and Except

Misc Scenarios in Selenium
1. Search and Find the text in Web table with pagination.
2. Navigate here - https://codepen.io/templatesio/full/MVWgxxog
3. Search “Calvin Golden” on page x.

Handling SVG & Shadow DOM

1. What is SVG - Scalable Vector Graphics to define graphics for web.
a. XML based language to create 2-D graphics/images with animation and
interactivity.
b. Uses geometrical figures to draw an image.

v ® ®
9KB 25KB 53KB

c. <svg> tag is used as a container for SVG graphics.

i. i.

X4 zoom X4 zoom

2. How to handle SVG Elements in Selenium?
3. How to create XPATH for SVG Elements in HTML DOM?

https://codepen.io/templatesio/full/MWqxxog

<svg>
<g>
<circle>
<polygon>
<path>

Your First SVG

https://www.w3schools.com/graphics/tryit.asp?filename=trysvg_myfirst

https://www.amcharts.com/svg-maps/?map=india" - Map is SVG

https://flipkart.com - Search button

SVG Automation Problem - Find the Tripura and Click on It

https://www.amcharts.com/svg-maps/?map=india" - Map is SVG

import pytest

from selenium import webdriver

from selenium.webdriver.common.by import By

from selenium.webdriver.common.keys import Keys

from selenium.webdriver.common.action chains import ActionChains

@pytest.fixture

def driver () :
driver = webdriver.Chrome ()
yield driver
driver.quit ()

def test svg demo (driver) :
driver.get ("https://flipkart.com")
driver.maximize window ()
search input = driver.find element (By.NAME, "g")
search input.send keys ("AC")

search element = driver.find element (By.XPATH,
"//*[local-name ()='svg']/*[local-name()='g' and @fill-rule='evenodd']")
actions = ActionChains (driver)

actions.move to element (search element).click() .perform/()

driver.get ("https://www.amcharts.com/svg-maps/?map=india")

https://www.w3schools.com/graphics/tryit.asp?filename=trysvg_myfirst
https://www.amcharts.com/svg-maps/?map=india
https://flipkart.com
https://www.amcharts.com/svg-maps/?map=india

states list = driver.find elements (By.XPATH,
"//*[name ()="'svg']/*[name ()="g'] [7]/*[name ()="g']/*[name ()="g"']/* [name (
)="path']")
for state in states list:
aria label = state.get attribute("aria-label")
print (aria label)
if aria label == "Tripura ":
actions.move to element (state).click().perform()
break
if name == " main_ ":
pytest.main(["-v"])

Shadow DOM

e Shadow DOM is a web standard that provides encapsulation for DOM and CSS in a
web component.

e |t allows developers to create encapsulated and reusable Ul components.

e FElements inside a Shadow DOM are hidden from the main document's DOM, and the
styles defined within a Shadow DOM do not affect the main document's styles, and
vice versa.

<IDOCTYPE html>
<html>
<head>
<title>Shadow DOM Example</title>
</head>
<body>
<my-custom-element>

<p>This content inside Shadow DOM</p>
</my-custom-element>
</body>
</html>

ScreenShot
e Simple Selenium Method to take screenshot

Relative Locators in Selenium

Selenium 4 introduces Relative Locators (previously called Friendly Locators). These
locators are helpful when it is not easy to construct a locator for the desired element, but
easy to describe spatially where the element is in relation to an element that does have an
easily constructed locator.

https://www.selenium.dev/documentation/webdriver/elements/locators/

Relative Locators in Selenium 4
1. above()

2. below()

3. toLeftOf()

4. toRightOf()

5. near()

Data Driven Testing (Apache POI)

Test data is stored in table or spreadsheet format.

In data-driven testing, the input data and expected results are created in a table or
spreadsheet.

Data generation can be done by - https://www.mockaroo.com/

Run your Test cases based on Data.

mermmtmnSts Data Driven Testing Framework

Test

Data File | —»: Driver Script —> Application Under Test
i Data —— F T rrTTeTPTTTTT— '
1 g, Com
Expected Actual
Output Output
Valid Email Valid Password Valid
Invalid Email Valid Password Invalid

https://www.selenium.dev/documentation/webdriver/elements/locators/
https://www.mockaroo.com/

import pytest
from selenium import webdriver
from openpyxl import load workbook

pip install pytest openpyxl pytest-excel
def get test datal():

workbook = load workbook ("testdata.xlsx")

sheet = workbook.active

data = []

for row in sheet.iter rows(min row=2, values only=True): #
Start from the second row to skip headers

data.append (row)
return data

@pytest.fixture
def setup teardown () :

driver = webdriver.Chrome ()

driver.get ("https://app.vwo.com") # Replace with your website
URL

driver.maximize window ()

yield driver

driver.quit ()

@pytest.mark.parametrize ("username, password", get test dataf())
def test login(setup teardown, username, password) :

driver = setup teardown

print (username, password)

Add your assertions or validation steps here
For example, assert that a successful login redirects to the

dashboard page

Wait for a brief moment to see the action

driver.implicitly_wait(5)

Page Object Model

What is a Page Object Model in Selenium?

is a design pattern in Selenium that creates an object repository for storing all web elements.
It helps reduce code duplication and improves test case maintenance.

https://www.selenium.dev/documentation/test practices/encouraged/page_object _models/

Gmail Login Page Gmail Home Page

GmailLoginPage.java GmailHomePage.java

Test Case

l l TestBase.java

Test cases

GmailLoginTest.java

Page Object Model in Selenium WebDriver is an Object Repository design pattern.
Selenium page object model creates our testing code maintainable, reusable.
Page Factory is an optimized way to create an object repository in the Page Object
Model framework concept.

e AjaxElementLocatorFactory is a lazy load concept in Page Factory — page object
design pattern to identify WebElements only when they are used in any operation.

PAGE OBJECT
MODEL PAGE FACTORY

It is a class which represents the Itis a way to initialize the web
web page and holds the elements within the page object
functionalities when the instance is created

https://www.selenium.dev/documentation/test_practices/encouraged/page_object_models/

To Reduce the code duplication

Why we need Pattern/Model? f
1 To maintain of test cases

®
Its design Ettern ‘

It's a design principle to manage the test cases and page objects
separately.

You can use data-driven, behavior-driven, keyword-driven
Frameworks with POM

Helping us with code re-usability, code maintenance, object
repository in the automation framework

Page Object Model (POM)

We define each Ul elements separately

=
Object classes > locators for each element of every web page
Page Class has action methods to apply the selenium actions on Ul
elements
Page Object class that represents a
web page and hold the functionality
and members.
Page Factory: .
They are well Q;_mmjz‘%
They are predefined library in selenium to find the web element
on the page
Jts way to nitialize the web elements you want to interact with
within the page object when you create an instance of it.
Page Factory: PF annotations use the attributes for specific locator types like id,
name, class name, CSS, link text, partial link text, class-name, and
XPath
It provides annotations like @FindBy, @FindAll, which locate the
web element and return the WebElement instance'for the same
Page factory also instantiate the
page class instance
Imnartant Daint .'__ RS S

POM vs Page Factory

o What is the Main difference between Page Object Model and Page Factory in Seleniu...

https://www.youtube.com/watch?v=EcjDrADDEfw

Selenium Manager (Beta)

e Selenium Manager is a binary generated with Rust that manages driver installation.
e Start the grid with this additional argument: --selenium-manager true
e https://www.selenium.dev/documentation/selenium_manager/

Configuration

Specific values can be overridden by specifying environment variables or by using a config file located by default at
~/.cache/selenium/selenium-manager-config.toml .

CLI Env Variable Config File

-browser chrome SE_BROWSER=chrome browser = “chrome”

—driver chromedriver SE_DRIVER=chromedriver driver = “chromedriver”
-browser-version 106 SE_BROWSER_VERSION=106 browser-version = “106”
~driver-version 106.05249.61 SE_DRIVER_VERSION=106.0.5249.61 driver-version = “106.0.5249.61"

-browser-path /path/to/chromium SE_BROWSER_PATH=/path/to/chromium browser-path = “/path/to/chromium”
SE_OS=macos os = “macos”
SE_ARCH=x64 arch = “x64"

—-proxy user@pass:myproxy:8080 SE_PROXY=user@pass:myproxy:8080 proxy = “user@pass:myproxy:8080”

-browser-ttl 0 SE_BROWSER_TTL=0 browser-ttl = 0
—driver-ttl 86400 SE_DRIVER_TTL=86400 driver-ttl = 86400
—clear-cache

Selenium Grid

e Want to run tests in parallel across multiple machines? Then, Grid is for you.
e Selenium Grid allows the execution of WebDriver scripts on remote machines by
routing commands sent by the client to remote browser instances.

Grid aims to:

Provide an easy way to run tests in parallel on multiple machines

Allow testing on different browser versions

Enable cross platform testing

Interested? Go through the following sections to understand how Grid works, and
how to set up your own.

https://www.selenium.dev/documentation/selenium_manager/

Selenium Grid architecture

Selenium 4 Grid Architecture

New Request — 00 oo

C‘ oo

Event Bus

00

Session Queue

l " l
(e
+ Router ‘
Client [_'_ .
[— oo
Sticky Request C oo
(GD

Session Map Distributor

)

Tester

Selenium Framework

Use the following: Tech Stack Linting
* naEenEEe Excel Reader

Solid Principle X Run on Jenkins
Python, ooP Multiple Env
Request Module =
Pytest, Pytest-htmi

.
.
+ Allure Report
.

Utilizes - Excel Reader, DB Reader

Test Data - Faker, CSV, JSON,
YAML, constants
* Runvia - Jenkins
« Parallel Execution
SIc resources
N n “
8o ¥ U pywebAutomation ~/Pyc .
et teStS
~ Bsre
* B pageabjects tests
> B utits .
& int_py pageObjects
‘B 3
o datadriven
.pytest cache
> B jogin
> B practice requirements.txt
2 int_py parrallel
= applog
L base_test.py
=] 2 conftestpy

@) ? Bveny

Parallel Test

CI/CD with APl Automation

Use the following:
- Git with Trigger
+ Jenkins

Framework

Reference

Merge

Trigger / Hooks
Branch

Stash

@ git

Adding CI/CD

@ Jenkins

Push resuts to
s3

Jenkins Tutorials

FreeStyle Job
Git Training Pipeline (Jenkins File)
Trigger Push to Run Build
Push
Pull

Jenkins Param

1.QA/ Stage
2. Preprod
3. Prod

Results Dashboard

Local / AWS
Selenium Grid

1. Hub
2. Nodes

Selenoid Grid
(Docker)

Cloud Grids

BrowserStack
Saucelabs

1. https://www.geeksforgeeks.ora/css-selectors-complete-reference/?ref=lb

2. https://google.com

3.

Jenkins (Automation Run)

Build

Nooas~ownN~

On Windows

set path="C:\Users\sikhi\AppData\Local\Programs\Python\Python312"

Push the code git
get the git link - public git
install jenkins
create a freestyle job - new item
SCM -> git link repo

Report -> Add a plugin Allure report, HTML Report Plugin configration.

set path="C:\Users\sikhi\AppData\Local\Programs\Python\Python312\Scripts"
pip install -r requirements.txt
pytest tests\integration_test\test crud.py

https://www.geeksforgeeks.org/css-selectors-complete-reference/?ref=lbp
https://google.com

On Mac

cd "/Users/pramod/.jenkins/workspace/Python 1x Automation”

pip3 install -r requirements.txt
/Library/Frameworks/Python.framework/Versions/3.9/bin/pytest
tests/integration_test/test_crud.py -s -v --html=report.html --alluredir=./reports

By using Virtual Env

/opt/homebrew/bin/python3 -m venv .

source ./bin/activate

pip install allure-pytest selenium pytest selenium-page-factory pytest-html openpyxI
pyyaml faker openpyx| pytest-xdist python-dotenv

pytest tests/test/vwolLoginTests/test_vwo_login_pf.py

deactivate

AWS Basics and Running Selenium Grid

e We will be using AWS for the Jenkins or Selenium Grid Install.

1. Create a Free tier account https://aws.amazon.com/free/
2. You will be logged in to the AWS Account

<« C @ ap-northeast-1.consol mazon. =ap-northeast-1# O % @Yo Gl =0 :
#oapps M v BB YT @cub @ @ brainfm N o B9 2023 YT @ ask 6 B Avd Bw & @ Funnel Growth su. Pan B3 TTA B Un ™M & [z [ProjectTTA @ Discuss TTABoard 2= » | B3 Other Bookmarks
e v
®
Console Home i Reset todefautttayout | S
Recently visited Info 8 Welcome to AWS

Getting started with AWS (3

9
E\ Zf teamthe fundamertalsand fnd valuable
2

information to get the most out of AWS.

No recently visited services S Training and certification &
=) Learn from AWS experts and advance your
Explore one of these commonly visited AWS services. W skills and knowledge.

1AM EC2 S3 RDS Lambda
v What's new with AWS? [2
O °
g/~ oiscover new AWS service,features, and
5 Regions.

AWS Health info H Cost and usage Info

https://aws.amazon.com/free/

Install Jenkins in AWS
Step - 1 Install Java

Update your system

sudo apt update

Install java

sudo apt install openjdk-11-jre -y
Validate Installation

java -version
It should look something like this

openjdk version "11.0.12" 2021-07-20 OpenJDK Runtime Environment (build
11.0.12+7-post-Debian-2) OpenJDK 64-Bit Server VM (build 11.0.12+7-post-Debian-2,
mixed mode, sharing)

Step - 2 Install Jenkins

Just copy these commands and paste them onto your terminal.
curl -fsSL https://pkg.jenkins.io/debian/jenkins.io.key | sudo tee \
/usr/share/keyrings/jenkins-keyring.asc > /dev/null

echo deb [signed-by=/usr/share/keyrings/jenkins-keyring.asc]\ https://pkg.jenkins.io/debian
binary/ | sudo tee \ /etc/apt/sources.list.d/jenkins.list > /dev/null
sudo apt-get update

sudo apt-get install jenkins

Step -3 Start jenkins

sudo systemctl enable jenkins

sudo systemctl start jenkins

sudo systemctl status jenkins

Step - 4 Open port 8080 from AWS Console:

Edit for Port - /etc/default/jenkins

How to find Java Location?

readlink -f $(which java)

Running Selenium Test cases on Selenium Grid

1. Install Selenoid
2. Install Docker

Sudo su // FOR SU user
Apt-get update

apt install docker.io -y

sudo systemctl status docker
sudo systemctl start docker

sudo wget "https://github.com/aerokube/cm/releases/download/1.8.1/cm_linux _amd64"

sudo chmod +x cm_linux_amd64
sudo ./cm_linux_amd64 selenoid start —vnc

Jem_linux_amdé64 selenoid-ui start
Jem_linux_amd64 selenoid-ui stop

https://github.com/aerokube/cm/releases/download/1.8.1/cm_linux_amd64

	Web Automation Selenium 4.x​Notes - TheTestingAcademy (Pramod Sir)
	📗 Mastering Web Automation with Selenium
	​​What is Selenium?
	Selenium vs Playwright vs Cypress
	
	Don’t use Selenium here
	
	WebDriver Architecture
	Install Browser Drivers
	Quick Reference

	Selenium IDE
	Selenium Grid (3,4.x)
	When to use Selenium Grid
	How to Start Selenium Grid
	
	Selenium Grid 4
	Different Grid Types
	Run Grid 4

	
	Run Selenium on Docker
	Run on Cloud Service Providers - BrowserStack

	
	
	
	
	
	
	Understanding Selenium API

	
	
	
	Virtual Env
	Logging with Pytest
	
	
	
	Webdriver Hierarchy
	
	
	
	ChromeDriver
	
	

	ChromeOptions
	pageLoadStrategy
	Proxy
	Remote WebDriver

	Difference Between Quit and Close in Selenium
	🧭Navigation in Selenium
	Navigation commands in Selenium

	🔎 Locators in Selenium
	
	[Assignment] - Automating the Login Page of VWO.com
	Understanding Locators and HTML Forms
	findElement vs findElements
	What is an HTML Form?
	text Method
	getAttribute() Method
	sendKeys
	click()

	⚒️ SelectorsHub for the Locators
	[Assignment] - Invalid error message Capture for the Login Page of VWO.com
	Link Text locator.

	🛣️ Mastering XPath
	Why do we need to MASTER Locators?
	Absolute XPath
	Relative Xpath
	XPath Functions
	Operators - AND & OR

	XPath Axes
	​
	
	
	
	
	
	

	⚠️ Master CSS Selectors
	
	
	​​​⌛Selenium Waits
	Implicit Wait
	Explicit Wait
	
	[Assignment] Fix the VWO login page with the heading page visibility, Use Expected Condition
	Fluent Wait

	Select Demo, Static and Dynamic Dropdowns
	Alert in Selenium
	Handling Checkboxes and Handling Radio Buttons
	
	
	Web Table in Selenium
	
	​Actions, Windows and iframe.
	
	JavaScript executor -
	
	Dynamic Elements
	
	
	
	
	
	
	
	Selenium Exception
	
	Handling SVG & Shadow DOM
	
	
	SVG Automation Problem - Find the Tripura and Click on It

	Relative Locators in Selenium
	Data Driven Testing (Apache POI)
	
	Page Object Model
	POM vs Page Factory

	Jenkins (Automation Run)
	
	
	AWS Basics and Running Selenium Grid

