

Web Automation Selenium 4.x​
Notes - TheTestingAcademy (Pramod Sir)

📗 Mastering Web Automation with Selenium

IDE

1.​ Pycharm
2.​ Visual Studio Code

 About Selenium

●​ Selenium Automates Web Browsers.

​
​
What is Selenium?

Selenium is an open-source suite.

which can automate browsers

History -

Selenium RC executed tests by injecting JavaScript code into the web browser being
automated. RC deprecated.

Webdriver - Find the elements,

https://www.browserstack.com/selenium#:~:text=First%20Selenium%20Test-,Selenium%3A%20A%20History,-A%20timeline%20of

Selenium vs Playwright vs Cypress

Compare Results -
https://blog.checklyhq.com/cypress-vs-selenium-vs-playwright-vs-puppeteer-speed-comparis
on/

https://blog.checklyhq.com/cypress-vs-selenium-vs-playwright-vs-puppeteer-speed-comparison/
https://blog.checklyhq.com/cypress-vs-selenium-vs-playwright-vs-puppeteer-speed-comparison/

Don’t use Selenium here
Few situations where you might not want to use Selenium for testing.

●​ Selenium is not well-suited for performance or load testing because it is
resource-intensive and can slow down the system under test.

●​ When you need to test native mobile apps.
●​ Selenium may have difficulty interacting with custom controls or non-standard UI

elements.
●​ Captcha / TWO-FACTOR AUTHENTICATION (2FA)
●​ FILE DOWNLOADS & VERIFICATION.
●​ AUDIO OR VIDEO STREAMING
●​ Security Testing
●​ API TESTING, mobile Appium is recommended.

https://www.pcloudy.com/blogs/testing-scenarios-you-should-avoid-while-automating-with-selenium/

WebDriver Architecture

Before Selenium 4

After Selenium 4.x (w3c)

They remove the JSON wire protocol

Now communicate directly to Browser via Browser Drivers.

Install Browser Drivers

Quick Reference

Browser Supported OS Maintained by

Chromium/Chrome Windows/macOS/Linux Google

Firefox Windows/macOS/Linux Mozilla

Edge Windows/macOS/Linux Microsoft

Internet Explorer Windows Selenium Project

Safari macOS High Sierra and newer Apple

Postman Collection -
https://api.postman.com/collections/611814-37f62772-042a-4e0d-bde8-488e26bf8be7?acce
ss_key=PMAT-01H5E8RJNFEVG8BE7CAB049ZFZ

HTML elements

<input type="email" class="text-input W(100%)" name="username" id="login-username"
data-qa="hocewoqisi" pramod=”dutta”>

HTML Tag - input
Attribute = value

https://www.w3schools.com/html/html_elements.asp

Selenium IDE
●​ Open source record and playback test automation for the web
●​ Selenide Language
●​ Installation
●​ Launch the IDE
●​ Recording test

○​ Suite
○​ test

●​ Command-line Runner
●​ npm install -g selenium-side-runner

https://api.postman.com/collections/611814-37f62772-042a-4e0d-bde8-488e26bf8be7?access_key=PMAT-01H5E8RJNFEVG8BE7CAB049ZFZ
https://api.postman.com/collections/611814-37f62772-042a-4e0d-bde8-488e26bf8be7?access_key=PMAT-01H5E8RJNFEVG8BE7CAB049ZFZ
https://www.w3schools.com/html/html_elements.asp

●​ npm install -g chromedriver
●​ npm install -g geckodriver
●​ Control Flow
●​ Code Export

Selenium Grid (3,4.x)
●​ Smart proxy server that makes it easy to run tests in parallel on multiple machines.
●​ Major components of Selenium Grid.
●​ Hub is a server that accepts the access requests from the WebDriver client, routing

the JSON test commands to the remote drives on nodes. It takes instructions from
the client and executes them remotely on the various nodes in parallel

●​ Note device that consists of a native OS and a remote WebDriver. It receives
requests from the hub in the form of JSON test commands and executes them using
WebDriver

When to use Selenium Grid

●​ Multiple browsers and their versions.
●​ Reduce the time that a test suite takes to complete a test.
●​ Cross Browser Testing.

How to Start Selenium Grid

java -jar selenium-server-standalone-<version>.jar -role hub​
​
java -jar selenium-server-standalone-<version>.jar -role node -hub

https://localhost:4444/grid/register

capability.setBrowserName();
capability.setPlatform();
capability.setVersion()
capability.setCapability(,);

Selenium Grid 4

●​ Router - Takes care of forwarding the request to the correct component.
●​ Distributor - Its main role is to receive a new session request and find a suitable

Node where the session can be created.
●​ Node - Each Node takes care of managing the slots for the available browsers of the

machine where it is running.
●​ Session Map - Keeps the information of the session id and the Node where the

session is running
●​ Event Bus - Event Bus serves as a communication path between the Nodes
●​ The Grid does most of its internal communication through messages, avoiding

expensive HTTP calls

Different Grid Types

1.​ Standalone Mode
2.​ Classical Grid (Hub and Node like earlier versions)
3.​ Fully Distributed (Router, Distributor, Session, and Node)

Run Grid 4

Running in Standalone Mode (vs Distributed Mode)​
java -jar selenium-server-4.0.0-alpha-6.jar standalone​
​
Start the Hub:​
java -jar selenium-server-4.0.0-alpha-6.jar hub​
​
​

Register a Node:​
java -jar selenium-server-4.0.0-alpha-6.jar node --detect-drivers

https://www.selenium.dev/documentation/en/grid/grid_4/setting_up_your_own_grid/

Run Selenium on Docker

https://github.com/SeleniumHQ/docker-selenium​
​
​
docker run -d -p 4444:4444 -v /dev/shm:/dev/shm

selenium/standalone-chrome:4.0.0-alpha-7-prerelease-20201009

Run on Cloud Service Providers - BrowserStack

https://www.browserstack.com/

Understanding Selenium API

https://www.w3.org/TR/webdriver/

https://drive.google.com/drive/folders/1tYeAaBbvE6WptutWSz_pU6DOpuaf22pp?usp=sharin
g

https://www.browserstack.com/
https://www.w3.org/TR/webdriver/
https://drive.google.com/drive/folders/1tYeAaBbvE6WptutWSz_pU6DOpuaf22pp?usp=sharing
https://drive.google.com/drive/folders/1tYeAaBbvE6WptutWSz_pU6DOpuaf22pp?usp=sharing

Virtual Env
●​ Isolate the Python Environments
●​ Main Parent - Global

○​ Prject basec Python version activate or deactivate the virtualenv
●​ How to Install

○​ Pip install virtualenv
○​ Virtualenv – help
○​ Optional - python -m pip install --user virtualenv
○​

●​ Create the environment (creates a folder in your current directory)
○​ virtualenv env_name

●​ In Linux or Mac, activate the new python environment
○​ source env_name/bin/activate

●​ Or in Windows
○​ .\env_name\Scripts\activate

●​ Confirm that the env is successfully selected
○​ which python3

●​ Deactivate
○​ deactivate

Logging with Pytest

1.​ Add by importing the import logging.
2.​ Add the format in which the logs you want in two

a.​ Pytest.ini
b.​ Pyproject.toml

i.​ Add the format
3.​ Use the logger by

a.​ logging.getLogger(__name__)
b.​ logger.info(“String message”)

import logging

LOGGER = logging.getLogger(__name__)
driver.get("https://www.google.com")
LOGGER.info('eggs info')
LOGGER.warning('eggs warning')

LOGGER.error('eggs error')
LOGGER.critical('eggs critical')

Webdriver Hierarchy
WebDriver API – The API is a set of classes and methods that allow you to interact with the
browser through code. The API allows running the tests on different browsers like Chrome,
Firefox, MS Edge, etc.

API gives you access to browser controls like the navigation bar, back button, tabs, windows,
etc. You can also get information from the browser, such as the current URL and page
source.

Also, different actions like typing in a textbox and working with WebElements like
checkboxes, radio buttons, and dropdowns can be performed using WebDriver API.

ChromeDriver

The ChromeDriver class provides a number of methods for interacting with the Chrome
browser, such as get() for navigating to a specific URL, findElement() for locating elements
on a page, and click() for simulating a mouse click on an element. You can use these
methods to automate a variety of actions on the Chrome browser.

ChromeOptions

https://gist.github.com/ntamvl/4f93bbb7c9b4829c601104a2d2f91fe5

import the ChromeOptions class from the org.openqa.selenium.chrome package

from selenium import webdriver
​

def test_login():
 chrome_options = webdriver.ChromeOptions()
 chrome_options.add_argument("--start-maximized")
 driver = webdriver.Chrome(chrome_options)
 driver.get("https://app.vwo.com")
 print(driver.title)
 driver.quit()

chrome_options = webdriver.ChromeOptions()
chrome_options.add_argument("--start-maximized")

https://gist.github.com/ntamvl/4f93bbb7c9b4829c601104a2d2f91fe5

pageLoadStrategy

Proxy

A proxy server acts as an intermediary for requests between a client and a server. In simple,
the traffic flows through the proxy server on its way to the address you requested and back.

from selenium import webdriver

def test_login():
 chrome_options = webdriver.ChromeOptions()
 chrome_options.add_argument("--start-maximized")
 # Set PageLoadStrategy to 'none' (Not a built-in option,
 # but we can use it for reference)
 # Add the proxy to ChromeOptions
 chrome_options.add_argument("--page-load-strategy=none")

 # Add the proxy to ChromeOptions
 proxy_server = "http://your_proxy_ip:your_proxy_port"
 chrome_options.add_argument('--proxy-server=' + proxy_server)

 driver = webdriver.Chrome(options=chrome_options)
 driver.get("https://app.vwo.com")
 print(driver.title)
 driver.quit()

Remote WebDriver

Remote WebDriver consists of a server and a client. The server is a component that listens
on a port for various requests from a Remote WebDriver client.

from selenium import webdriver

from selenium.webdriver.common.desired_capabilities import

DesiredCapabilities

Create ChromeOptions instance

chrome_options = webdriver.ChromeOptions()

Add options to ChromeOptions (same as shown in the previous example)

chrome_options.add_argument('--headless')

chrome_options.add_argument('--window-size=1366x768')

Set desired capabilities with ChromeOptions

desired_capabilities = DesiredCapabilities.CHROME.copy()

desired_capabilities['platform'] = 'ANY' # Platform can be 'WINDOWS',

'LINUX', etc.

desired_capabilities['version'] = '' # Version can be empty or specific

version like '91.0'

URL of the Remote WebDriver server

remote_server_url =

"http://<remote_server_ip>:<remote_server_port>/wd/hub"

Create Remote WebDriver instance

driver = webdriver.Remote(command_executor=remote_server_url,

desired_capabilities=desired_capabilities, options=chrome_options)

Navigate to the desired URL

driver.get("https://example.com")

Now you can interact with the web page using the specified options on

the Remote WebDriver

Remote WebDriver is commonly used in conjunction with a cloud-based testing service,
which allows for distributed testing across multiple machines and environments.

Difference Between Quit and Close in Selenium

driver.close(); // Closed the window, Session id != null, Error - Invalid session Id
driver.quit(); // Closed All the window and Session = null, Error - Session ID is null

🧭Navigation in Selenium

●​ Refresh, forward, back
●​ driver.get()

Navigation commands in Selenium
get(String url) - This command is used to open a specific URL in the browser.

driver.get("https://www.example.com");
navigate().to(String url) - Not Exist in python

●​ Refresh
●​ Back

●​ forward

Navigation Command
driver.back()
driver.get("https://www.bing.com")
print(driver.title)

driver.forward()
print(driver.title)

driver.back()
print(driver.title)
driver.refresh()

time.sleep(5)

driver.quit()

🔎 Locators in Selenium
A locator is a way of identifying an element on a web page so that it can be interacted with.

There are several different types of locators that can be used, including:

●​ ID: This locator type uses the unique ID attribute of an element to locate it on the
page.

●​ Name: This locator type uses the name attribute of an element to locate it on the
page.

●​ Class name: This locator type uses the class attribute of an element to locate it on
the page.

●​ Tag name: This locator type uses the HTML tag name of an element to locate it on
the page.

●​ Link text: This locator type uses the text of a link to locate it on the page.
●​ Partial link text: This locator type uses part of the text of a link to locate it on the

page.

●​ CSS selector: This locator type uses a CSS selector to locate an element on the
page.

●​ Xpath: This locator type uses an XPath expression to locate an element on the page.
●​ When writing test scripts with Selenium, you can use a combination of these locator

types to accurately and reliably locate elements on the page.

●​ find_element_by_id: Finds an element by its unique id attribute.
●​ find_element_by_name: Finds an element by its name attribute.
●​ find_element_by_xpath: Finds an element using an XPath expression.
●​ find_element_by_link_text: Finds an anchor element (a) by its visible text.
●​ find_element_by_partial_link_text: Finds an anchor element (a) by a partial match of

its visible text.

●​ find_element_by_tag_name: Finds an element by its HTML tag name (e.g., "div",
"input", "a", etc.).

●​ find_element_by_class_name: Finds an element by its CSS class name.
●​ find_element_by_css_selector: Finds an element using a CSS selector.

For multiple elements, you can use the plural versions of these functions.

●​ (e.g., find_elements_by_id, find_elements_by_name, etc.), which will return a list of
matching WebElement objects.

It uses "locators" to identify and manipulate elements on a web page. There are several

types of locators that can be used in Selenium, including:

<a id="btn-make-appointment" href="./index.php#appointment" class="btn btn-dark

btn-lg">Make Appointment

1.​ ID: This locator uses the unique id attribute of an element to locate it. For example, if
the HTML for an element on the page looks like this: <div id="some-id">...</div>, you can
use the ID locator "#some-id" to find this element.

2.​ Name: This locator uses the name attribute of an element to locate it. For example, if
the HTML for an element on the page looks like this: <input name="username">, you can
use the Name locator "username" to find this element.

3.​ Class Name: This locator uses the class attribute of an element to locate it. For
example, if the HTML for an element on the page looks like this: <div
class="some-class">...</div>, you can use the Class Name locator ".some-class" to find this
element.

4.​ Link Text: This locator uses the visible text of a link element to locate it. For example,
if the HTML for a link on the page looks like this: VWO, you can use the Link Text locator "VWO" to find this
element.

5.​ Partial Link Text: This locator is similar to the Link Text locator, but it only matches a
portion of the link text. For example, using the Partial Link Text locator "VWO" would
match a link with the text "Welcome to VWO".

6.​ CSS Selector: This locator uses a CSS selector to locate an element. CSS selectors
are strings that specify how to find an element on a page based on its HTML
structure. For example, if the HTML for an element on the page looks like this: <div
class="some-class" id="some-id">...</div>, you can use the CSS selector
"div.some-class#some-id" to find this element.

7.​ XPath: This locator uses an XPath expression to locate an element. XPath is a
language for navigating and selecting elements in an XML document (including
HTML documents). It allows you to specify complex, hierarchical patterns for
locating elements on a page. For example, if you want to find all the <p> elements that
are descendants of the <div> element with the ID "some-id", you could use the XPath
expression "//div[@id='some-id']/p" to find these elements.

These are the main types of locators that are used in Selenium. Which one you use will

depend on the specific elements you are trying to locate on the page, and the HTML

structure of the page itself.

[Assignment] - Automating the Login Page of VWO.com

1.​ Fetch the locators - https://app.vwo.com/
2.​ Create a Maven project and add TestNG.
3.​ Add the Allure Report (Allure TestNG)
4.​ Automate the two Test cases of VWO.com

a.​ Valid Username and Valid Password
5.​ Run them and share results.
6.​ Push the code to github.com
7.​ Git repo - ReadMe.md a Screen shot of allure.

Understanding Locators and HTML Forms

Tag
Attribute = Value

<input data-qa="hocewoqisi" type="email" class="text-input W(100%)"
name="username" id="login-username" >
<input data-qa="hocewoqisi" type="email" class="text-input W(100%)"
name="username2" id="login-username" >

data-qa="hocewoqisi"
type="email"
class="text-input W(100%)"
name="username"
id="login-username"

Preference
id -> name -> className -> Link Text / Partial Text(a) -> CSS Selector -> XPath.

XPath - 60%
CSS Selector - 30%
ID, Name, CLASS - 10%

Custom attribute it is not id, name, class -> Custom Attribute -
 # student = "praveen" , roll=123, phone="233", placeholder="dasda"
 #data-qa="dasda" , testID="123"

findElement vs findElements

findElement() is a method used to locate a single element on a web page. It takes a locator as

an argument, and returns the first matching element that it finds. For example:

usernameField = driver.findElement(By.ID,"username"));

In this example, findElement() is used to locate the element with the ID "username". If it is

found, the element is returned and stored in the usernameField variable.

findElements() is similar to findElement(), but it returns a list of all matching elements instead of

just the first one. For example:

allLinks = driver.findElements(By.TAGNAME("a"));

In this example, findElements() is used to locate all <a> elements on the page. These elements

are returned in a list and stored in the allLinks variable.

It's important to note that if findElement() is used and no matching element is found, it will

throw a NoSuchElementException. On the other hand, if findElements() is used and no matching

elements are found, it will return an empty list.

What is an HTML Form?

A HTML form is a section of a web page that contains form elements, such as text fields,
checkboxes, and buttons. Forms allow users to enter data and interact with a website.

Forms are created using the <form> HTML tag. This tag defines the start and end of a form,
and it can have several attributes that determine how the form behaves.

For example, the action attribute specifies the URL of the server-side script that will process
the form data, and the method attribute specifies whether the form data will be sent to the
server using the GET or POST method.

<form action="http://www.example.com/form-handler.php" method="POST">​
 <label for="username">Username:</label>​
 <input type="text" id="username" name="username">​

​
 <label for="password">Password:</label>​
 <input type="password" id="password" name="password">​

​
 <input type="submit" value="Log In">​
</form>

When the user enters their username and password and clicks the "Log In" button, the form
data will be sent to the server-side script at the URL specified in the action attribute
(http://www.example.com/form-handler.php) using the POST method.

The server-side script can then process the form data and perform the desired action, such
as checking the user's credentials against a database and logging them in.

text Method

the getText() method is used to retrieve the text of an element on a web page. This method
can be called on an element, and it will return the text of the element, including any child
elements.

WebElement element = driver.findElement(By.id("some-id"));​
String elementText = element.getText();

getAttribute() Method

the getAttribute() method is used to retrieve the value of an attribute of an element on a web
page.

element = driver.findElement(By.ID,"some-id");​
element.getAttribute("class");

sendKeys

the sendKeys() method is used to enter text into a text field or text area on a web page

click()

the click() method is used to simulate a user clicking on an element on a web page

⚒️ SelectorsHub for the Locators

SelectorsHub is a tool that can be used to help identify and generate locators for elements
on a web page in Selenium

https://selectorshub.com/

[Assignment] - Invalid error message Capture for the Login Page of VWO.com

8.​ Fetch the locators - https://app.vwo.com/
9.​ Create a Python project and add pytest, alloure.
10.​Add the Allure Report (Allure pytest)
11.​Automate the two Test cases of VWO.com

a.​ Invalid Username and Valid Password.
12.​Capture the error and pass the test.
13.​Run them and share results.

Link Text locator.

the findElement() method is used with the By.linkText() locator to locate a link on the page
with the text "VWO". The element is then stored in the vwoLink variable.

The click() method is called on this element, which simulates the user clicking on the link
with their mouse. This will navigate the user to the URL specified in the href attribute of the
<a> element.

🛣️ Mastering XPath

https://selectorshub.com/

What is XPath?

XPath is a query language for selecting nodes from an HTML / XML document.
XPath was defined by the World Wide Web Consortium.

Core Logic - //tagName[@attribute='value']

<input type="email" class="text-input W(100%)" name="username" id="login-username"
data-qa="hocewoqisi">

//input[@data-qa="hocewoqisi"]
//input[@id="login-username"]
//input[@name="username"]

//li[@data-qa="rubehixixu"]/input

//*[@name="username"] - Slow way (* wild card) - search for all the tags with unique name
= usernmae

For Button

//button - all buttons - Not good
//button[@type='submit'] - 2 Elements
//button[@id='js-login-btn'] - 1 Element
//button[@data-qa='sibequkica'] - 1 Element

TAG - h1, p, input, a, form, img, video, audio,button, table, ul, li, tr, div, select, span, -> Html
Tags

Attrbute - id, class, name, alt, href, src, data-qa, ….srcset ..

-​ Relative XPath
-​ Absolute XPath

-​ XPath Functions

Absolute XPath

-​ From the root
-​ Big problem - of on future any changes in html page
-​ Abs Xpath will break
-​

/html/body/div[2]/div[1]/div[2]/div/div[1]/div/div/div[3]/form[1]/ul/li[1]/div/input

Why do we need to MASTER Locators?

Probably the first question asked by the interviewer.

●​ You should always find small and efficient Locators.
●​ UI Automation is all about finding locators.
●​ Don't use tools at first.

//input[@id='login-password']/../

Absolute XPath

1.​ Complete path from the Root Element.
2.​ If any element is added or deleted, Xpath fails.
3.​ /html/body/div[2]/div[1]/div[2]/div/div[1]/div/div/div[3]/form[1]/ul/li[1]/div/input

Relative Xpath

1.​ Short and simple to use.
2.​ You can simply start by referencing the element you want and go from there

Based on searching an element in DOM.//*[@id="login-username"].

//input[@id="login-username"]

Xpath -> //input[@id="txt-username"]

Css - > #txt-username

XPath Functions

●​ Known Attribute - //*[@id='btn-make-appointment']

●​ TAG Name - //a[@id='btn-make-appointment']
●​ Xpath Function

○​ Full Visible text - text() - //a[text()='Make Appointment'], //*[text()='Make
Appointment']

○​ Partial Text() - contains()
■​ //a[contains(text(),'Make Appointment')]
■​ //a[contains(text(),'Make')]
■​ //a[contains(text(),'Appointment')]
■​ //a[contains(text(),'App')] - This may fail if there 1 or more a tag with

App.
■​ //a[contains(@id,'btn-make-appointment')]

○​ //a[starts-with(text(),'Make')]
●​

Contains()
//tag_name[contains(@attribute,'value_of_attribute')]

Starts-with()
//tag_name[starts-with(@attribute,'Part_of_Attribute_value')]
Text()
//tag_name[text()='Text of the element']

String functions

concat(string, ...): XPath concat function concatenated number of arguments and return to a
concatenated string.

starts-with(string, string): XPath start-with function return True/False. Return True if second
argument string is start with first argument.

contains(string, string) - XPath contains function return True/False. Return True if second
argument string is a contain of first argument.
string-length(string): XPath string-length function return the length of string.

substring-after(string, string): XPath substring-after function return the substring of the first
argument string base on first occurrence of the second argument string after all character.

substring-before(string, string): XPath substring-before function return the substring of the
first argument string base on first occurrence of the second argument string before all
character.

normalize-space(string): XPath normalize-space function sequence of whitespace combine
into single normalize space and removing leading and trailing whitespace.

https://katalon-demo-cura.herokuapp.com/

https://katalon-demo-cura.herokuapp.com/

Operators - AND & OR

And Example
//tag_name[@name = 'Name value' and @id = ‘ID value’]

https://katalon-demo-cura.herokuapp.com/

//a[text()="Make Appointment" and contains(@id,"btn-make-appointment")]

OR Example
//input[@placeholder ='Full Name' or @type = 'text']

https://katalon-demo-cura.herokuapp.com/

XPath Axes
In the XML documents, we have relationships between various nodes to locate those nodes
in the DOM structure.

●​ Ancestor
●​ Child, parent
●​ Descendant
●​ Following, following-sibling
●​ Self.

https://www.softwaretestinghelp.com/xpath-axes-tutorial/

//span[text()='Invalid Email']/ancestor::div

//*[@id="main-page"]/div[1]/child::div

//*[@id="js-main-container-wrap"]/child::div
//*[@id="js-main-container-wrap"]/following::div

https://devhints.io/xpath

https://www.softwaretestinghelp.com/xpath-axes-tutorial/
https://devhints.io/xpath

​

⚠️ Master CSS Selectors
CSS selectors are used to select elements in an HTML or XML document in order to apply
styles or other manipulations to those elements.

CSS selectors allow you to select elements based on their tag name, id, class, attribute, and
other characteristics.

●​ To select all elements with the tag "p" (paragraph), you could use the following
selector: p

●​ To select an element with the ID "main-heading", you could use the following
selector: #main-heading

●​ To select all elements with the class "error", you could use the following selector:
.error

●​ To select all elements with the attribute "disabled", you could use the following
selector: [disabled]

●​ To select all "a" elements that are descendants of a "nav" element, you could use the
following selector: nav a

form#login-form input[type="radio"]

CSS [attribute*=value] Selector​

The [attribute*=”str”] selector is used to select those elements whose attribute value contains
the specified substring str.

CSS [attribute=value] Selector​
The [attribute=value] selector in CSS is used to select those elements whose attribute value
is equal to “value”.

CSS [attribute$=value] Selector​ The [attribute$=”value”] selector is used to select those
elements whose attribute value ends with a specified value “value”.
CSS [attribute|=value] Selector​ This is used to select those elements whose attribute
value is equal to “value” or whose attribute value started with “value” immediately followed
by hyphen (-).

CSS [attribute~=value] Selector​ The [attribute~=”value”] selector is used to select those
elements whose attribute value contains a specified word.

CSS [attribute^=value] Selector​ The [attribute^=value] selector is used to select those
elements whose attribute value begins with given attribute.

CSS :first-child Selector​ The :first-child selector is used to select those elements which
are the first-child elements.

CSS :last-child Selector​ The :last-child Selector is used to target the last child element
of it’s parent for styling.

CSS :nth-child() Selector​ The :nth-child() CSS pseudo-class selector is used to match
the elements based on their position in a group of siblings.

CSS :nth-of-type() Selector​The :nth-of-type() in css Selector is used to style only those
elements which are the nth number of child of its parent element.

​
​
​

⌛Selenium Waits

Why Do We Need Waits In Selenium?
-​ Web applications are developed using Ajax and Javascript.
-​ New JS frameworks are more advanced and use AJax, react, and angular.
-​ elements which we want to interact with may load at different time intervals.

Implicit Wait

●​ Selenium Web Driver has borrowed the idea of implicit waits from Watir.
●​ If the element is not located on the web page within that time frame, it will throw an

exception.
●​ WebDriver polls the DOM for a certain duration when trying to find any element.
●​ Global settings applicable to all elements
●​ It tells the web driver to wait for the x time before moving to the next command.
●​ Gives No Such Element Exception.
●​ Once it is set it is applicable to full automation script.
●​ Implicit wait is maximum time between the two commands.
●​ Different from time.sleep - time.sleep() - It will sleep time for script/ Py Int.
●​ Not good way to use it in script as it's sleep without condition.
●​ Do not mix implicit and explicit waits. Doing so can cause unpredictable wait times.

from selenium import webdriver

driver = webdriver.Chrome()

driver.implicitly_wait(10) # Wait up to 10 seconds for elements to

appear

driver.get("https://example.com")

​ ​ ​ ​ ​

Explicit Wait

Explicit Wait in Selenium is used to tell the Web Driver to wait for certain conditions
(Expected Conditions) or maximum time exceeded before throwing
“ElementNotVisibleException” exception

●​ Little intelligent wait, wait for certain conditions.
●​ They allow your code to halt program execution, or freeze the thread, until the

condition you pass it resolves.
●​ The condition is called with a certain frequency until the timeout of the wait is

Elapsed.
●​ This means that for as long as the condition returns a falsy value, it will keep trying

and waiting.
●​ It provides better way to handle the dynamic Ajax elements
●​ Element not visible exception if element not found.
●​ Good fit for synchronizing the state between the browser and its DOM, and your.
●​ Replace Thread.sleep / time.sleep() with explicit wait always

from selenium import webdriver

from selenium.webdriver.common.by import By

from selenium.webdriver.support.ui import WebDriverWait

from selenium.webdriver.support import expected_conditions as EC

driver = webdriver.Chrome()

driver.get("https://example.com")

Wait up to 10 seconds until an element with ID 'some-element' becomes

visible - 2 ->

element = WebDriverWait(driver, 10).until(

 EC.visibility_of_element_located((By.ID, 'some-element'))

)

The following are the Expected Conditions that can be used in Selenium Explicit Wait

Expected Conditions for Waiting:

You can use various expected conditions with explicit waits, such as:

●​ visibility_of_element_located: Wait for an element to become visible.
●​ element_to_be_clickable: Wait for an element to be clickable.

●​ presence_of_element_located: Wait for an element to be present in the DOM.
●​ text_to_be_present_in_element: Wait for specific text to be present in an element.
●​ title_contains: Wait for the page title to contain a specific text.

[Assignment] Fix the VWO login page with the heading page visibility, Use Expected
Condition

Fluent Wait

Fluent Wait instance defines the maximum amount of time to wait for a condition as well as
the frequency with which to check the condition

-​ Exception - NoSuchElementException
-​ Waiting 30 seconds for an element to be present on the page, checking for its

presence once every 5 seconds.

from selenium import webdriver

from selenium.webdriver.common.by import By

from selenium.webdriver.support.ui import WebDriverWait

from selenium.webdriver.support.ui import FluentWait

from selenium.webdriver.support import expected_conditions as EC

driver = webdriver.Chrome()

driver.get("https://example.com")

wait = FluentWait(driver, timeout=30, polling_frequency=5,

ignored_exceptions=[NoSuchElementException])

element = wait.until(EC.presence_of_element_located((By.ID,

'some-element')))

https://www.selenium.dev/
documentation/en/webdriver/
waits/

Ref - https://www.guru99.com/implicit-explicit-waits-selenium.html

https://www.guru99.com/implicit-explicit-waits-selenium.html

Implicit Wait Explicit Wait

●​ Implicit Wait time is applied to all the
elements in the script

●​ Explicit Wait time is applied only to those element
by us

●​ In Implicit Wait, we need not specify
“ExpectedConditions” on the
element to be located

●​ In Explicit Wait, we need to specify “ExpectedCon
element to be located

●​ It is recommended to use when the
elements are located with the time
frame specified in Selenium implicit
wait

●​ It is recommended to use when the elements are
load and also for verifying the property of the elem
like(visibilityOfElementLocated,
elementToBeClickable,elementToBeSelected)

Select Demo, Static and Dynamic Dropdowns

Handling Static Dropdowns

https://the-internet.herokuapp.com/dropdown

https://the-internet.herokuapp.com/dropdown

Handling Dynamic Dropdowns

1.​ We will use the XPath axes.
2.​ We will use the advanced css selectors for the same.
3.​ Traditional select classes won't work.

Alert in Selenium
An alert is a small window that appears on top of a web page and displays a message to the
user. Most of the time, alerts are used to show important information or ask the user for
something.

https://the-internet.herokuapp.com/javascript_alerts

 Prompt Alert

Confirmation Alert

https://the-internet.herokuapp.com/javascript_alerts

Handle Alert in Selenium WebDriver

from selenium import webdriver

from selenium.webdriver.support.ui import WebDriverWait

from selenium.webdriver.support.expected_conditions import

alert_is_present

Initialize the Chrome WebDriver

driver = webdriver.Chrome()

Navigate to a web page that displays an alert

driver.get("http://example.com/page-with-alert")

Wait for the alert to appear

wait = WebDriverWait(driver, 10)

wait.until(alert_is_present())

Now you can interact with the alert using the driver.switch_to.alert

method

alert = driver.switch_to.alert

For example, accept the alert

alert.accept()

Or dismiss the alert

alert.dismiss()

After interacting with the alert, you can continue with the rest of

your test script

...

Don't forget to close the browser when you are done

driver.quit()

1) void dismiss() // To click on the ‘Cancel’ button of the alert.

2) void accept()// To click on the ‘OK’ button of the alert.

3) String getText() // To capture the alert message.

4) void sendKeys(String stringToSend) // To send some data to alert box.

from selenium import webdriver​
from selenium.webdriver.common.alert import Alert​
​
Initialize the Chrome WebDriver​
driver = webdriver.Chrome()​
​
Navigate to a web page that displays an alert​
driver.get("http://example.com/page-with-alert")​
​
Switch to the alert​
alert = Alert(driver)​
​
Send keys (input text) to the alert​
alert.send_keys("Text")​
​
Continue with the rest of your test script...

Handling Checkboxes and Handling Radio Buttons
Checkboxes and radio buttons are types of form elements that allow users to make multiple
selections or choose a single option from a group of options.

from selenium import webdriver​
from selenium.webdriver.common.by import By​
​
Initialize the Chrome WebDriver​
driver = webdriver.Chrome()​
​
Navigate to the web page containing checkboxes​
driver.get("http://example.com/page-with-checkboxes")​

​
Find all checkbox elements using CSS selector​
checkboxes = driver.find_elements(By.CSS_SELECTOR,

"input[type='checkbox']")​
​
Iterate through the checkbox elements​
for checkbox in checkboxes:​
 # Check the checkbox if it is not already checked​
 if not checkbox.is_selected():​
 checkbox.click()​
​
Continue with the rest of your test script...

Web Table in Selenium

What is a Web Table?

A web table is a way of representing data in rows and columns.

"<table>" - It defines a table. You can also say that it's the starting point of a table.

<thead>
<tbody>

"<th>" - It defines a header cell, which means you should define your headings inside th tag.
"<tr>" - It defines a row in a table.
"<td>" - It defines a cell in a table. "td" always lie inside the tr tag.

//table[@id="customers"]

//table[contains(@id,"cust")]

Example -
https://awesomeqa.com/webtable.html

https://awesomeqa.com/webtable.html

Static Table - Data will not change.

Dynamic Table - No of Col may change.

from selenium import webdriver​
​
Initialize the Firefox driver​
driver = webdriver.Firefox()​
​
URL for the web page​
URL = "https://awesomeqa.com/webtable.html"​
driver.get(URL)​
driver.maximize_window()​
​
Number of Rows and Columns in the table​
row_elements =

driver.find_elements_by_xpath("//table[@id='customers']/tbody/tr")​
col_elements =

driver.find_elements_by_xpath("//table[@id='customers']/tbody/tr[2]/td")​
​
row = len(row_elements)​
col = len(col_elements)​
​
print(row)​
print(col)​
​
first_part = "//table[@id='customers']/tbody/tr["​
second_part = "]/td["​
third_part = "]"​
​
Loop through rows and columns to print data​
for i in range(2, row + 1):​
 for j in range(1, col + 1):​
 dynamic_xpath = f"{first_part}{i}{second_part}{j}{third_part}"​
 data = driver.find_element_by_xpath(dynamic_xpath).text​
 print(data, end=" ")​
 print()​
​
Find Helen Bennett's country​
for i in range(2, row + 1):​
 for j in range(1, col + 1):​
 dynamic_xpath = f"{first_part}{i}{second_part}{j}{third_part}"​
 data = driver.find_element_by_xpath(dynamic_xpath).text​
 if "Helen Bennett" in data:​

 country_path = f"{dynamic_xpath}/following-sibling::td"​
 country_text = driver.find_element_by_xpath(country_path).text​
 print("------")​
 print(f"Helen Bennett is in - {country_text}")​
​
print(" ||||||||||||||||||||||| \n")​
​
Navigate to another URL​
driver.get("https://awesomeqa.com/webtable1.html")​
​
Get the table​
table = driver.find_element_by_xpath("//table[@summary='Sample

Table']/tbody")​
rows_table = table.find_elements_by_tag_name("tr")​
​
Loop through rows and columns to print data​
for row_element in rows_table:​
 columns_table = row_element.find_elements_by_tag_name("td")​
 for element in columns_table:​
 print(element.text)​
​
Quit the driver​
driver.quit()

​
Actions, Windows and iframe.

Actions class is an ability provided by Selenium for handling keyboard and mouse events.

●​ Keyboard Events
●​ Mouse Events
●​ Wheel Mouse

from selenium.webdriver.common.action_chains import

ActionChains

actions = ActionChains(driver)​

​

actions.key_down(Keys.SHIFT)\

.send_keys_to_element(FIRSTNAME, "the testing academy")\

.key_up(Keys.SHIFT)\

.perform()

Methods of Action Class
Action class is useful mainly for mouse and keyboard actions. In order to perform such
actions, Selenium provides various methods.

 Mouse Actions in Selenium:

1.​ Perform Mouse Hover Action on the Web Element
2.​ moveToElement(live).build().perform();
3.​ doubleClick(): Performs double click on the element
4.​ clickAndHold(): Performs long click on the mouse without releasing it
5.​ dragAndDrop(): Drags the element from one point and drops to another
6.​ moveToElement(): Shifts the mouse pointer to the center of the element
7.​ contextClick(): Performs right-click on the mouse Keyboard Actions in Selenium
8.​ sendKeys(): Sends a series of keys to the element
9.​ keyUp(): Performs key release
10.​keyDown(): Performs keypress without release.

import pytest
from selenium import webdriver
from selenium.webdriver.common.keys import Keys
from selenium.webdriver.common.action_chains import
ActionChains
from selenium.webdriver.common.by import By

@pytest.mark.actions
def test_01_actions():
 # Initialize the Firefox driver
 driver = webdriver.Firefox()

 # URL for the web page
 URL = "https://awesomeqa.com/practice.html"
 driver.get(URL)
 driver.maximize_window()

 FIRSTNAME = driver.find_element(By.NAME, "firstname")

 # Create object of ActionChains class
 actions = ActionChains(driver)

 # This will type Username in Uppercase as we are typing
using Shift key pressed
 actions.key_down(Keys.SHIFT)\
 .send_keys_to_element(FIRSTNAME, "the testing
academy")\
 .key_up(Keys.SHIFT)\
 .perform()

 date = driver.find_element(By.ID, "datepicker")
 actions.send_keys_to_element(date,
"23/12/2025").perform()

 link = driver.find_element(By.XPATH,
"//a[contains(text(), 'Click here to Download File')]")
 actions.context_click(link).perform()

 # Quit the driver
 driver.quit()

Run the test function
if __name__ == "__main__":
 pytest.main([__file__])

Keyboard Events

KeyDown(KeyCode) - Performs key press without releasing it.

ActionChains(driver)\
 .key_down(Keys.SHIFT)\
 .send_keys("abc")\
 .perform()

KeyUp(KeyCode) - Performs a key release. It has to be used after keyDown to release the
key.

 ActionChains(driver)\
 .key_down(Keys.SHIFT)\
 .send_keys("a")\
 .key_up(Keys.SHIFT)\
 .send_keys("b")\
 .perform()

Send Keys

ActionChains(driver)\
 .send_keys("abc")\
 .perform()

Send to Element

text_input = driver.find_element(By.ID, "textInput")
 ActionChains(driver)\
 .send_keys_to_element(text_input, "abc")\
 .perform()

Copy and Paste

cmd_ctrl = Keys.COMMAND if sys.platform == 'darwin' else Keys.CONTROL​
​
 ActionChains(driver)\​
 .send_keys("Selenium!")\​
 .send_keys(Keys.ARROW_LEFT)\​
 .key_down(Keys.SHIFT)\​
 .send_keys(Keys.ARROW_UP)\​
 .key_up(Keys.SHIFT)\​
 .key_down(cmd_ctrl)\​
 .send_keys("xvv")\​
 .key_up(cmd_ctrl)\​
 .perform()

Mouse actions

●​ Click and hold
●​ Click and release
●​ Context Click
●​ Back Click
●​ Double click
●​ Move to element
●​ Move by offset

Drag and Drop

With Action or with Function

String URL = "https://the-internet.herokuapp.com/drag_and_drop";​
 driver.get(URL);​
 driver.manage().window().maximize();​
//Actions class method to drag and drop​
 Actions builder = new Actions(driver);​
 WebElement from = driver.findElement(By.id("column-a"));​
 WebElement to = driver.findElement(By.id("column-b"));​
//Perform drag and drop​
 builder.dragAndDrop(from,to).perform();

Scroll wheel actions

●​ Scroll to element
●​ Scroll by given amount
●​ Scroll from an element by a given amount
●​ Scroll from an element with an offset

​
File Upload​
​
from selenium import webdriver

from selenium.webdriver.common.by import By

from selenium.webdriver.chrome.options import Options

from selenium.webdriver.common.keys import Keys

Set Chrome options

options = Options()

options.page_load_strategy = 'normal'

Initialize the Chrome driver with options

driver = webdriver.Chrome(options=options)

URL for the web page

URL = "https://awesomeqa.com/selenium/upload.html"

driver.get(URL)

driver.maximize_window()

upload_file = driver.find_element(By.XPATH,

"//input[@id='fileToUpload']")

upload_file.send_keys("/Users/pramod/Documents/Course/apitesting.jpeg")

driver.find_element(By.NAME, "submit").click()

Quit the driver

driver.quit()

​

Window:
In any browser, a window is the main webpage to which the user is directed after clicking on
a link or URL. Such a window in Selenium is referred to as the "parent window also known
as the main window which opens when the Selenium WebDriver session is created and has
all the focus of the WebDriver.

import pytest​
from selenium import webdriver​
from selenium.webdriver.common.by import By​
​
@pytest.mark.usefixtures("driver")​
def test_01_windows(driver):​
 # Open the page​
 driver.get("https://the-internet.herokuapp.com/windows")​
​
 # Store the handle of the current window​
 main_window_handle = driver.current_window_handle​
​
 # Find the "Click Here" link​
 link = driver.find_element(By.LINK_TEXT, "Click Here")​
​
 # Click the link to open a new window​
 link.click()​
​
 # Store the handles of all open windows in a list​
 window_handles = driver.window_handles​
​
 # Iterate through the list of window handles​
 for handle in window_handles:​
 # Switch the focus to each window in turn​
 driver.switch_to.window(handle)​
​
 # Check if the text "New Window" is present in the window​
 if "New Window" in driver.page_source:​
 print("The text 'New Window' was found in the new window.")​
 break​
​
 # Switch the focus back to the main window​

 driver.switch_to.window(main_window_handle)​
​
if __name__ == "__main__":​
 pytest.main([__file__])

IFRAME

An iframe (short for inline frame) is an HTML element that allows you to embed another
HTML document within the current document. Iframes are often used to embed videos,
advertisements, or other external content on a webpage.

1.​
2.​ By Index
3.​ By Name or Id
4.​ By Web Element

 # Switch frame by id​
driver.switch_to.frame('buttonframe')​
​
 # Now, Click on the button​
driver.find_element(By.TAG_NAME, 'button').click()​
​

[Assignment] Open HEATMAP of vwo.com and Click on iframe Click map

ActionClass, Iframew, Windows

1.​ Open this link with webdriver
https://app.vwo.com/#/analyze/osa/13/heatmaps/1?token=eyJhY2NvdW50X2lkIjo2Nj
Y0MDAsImV4cGVyaW1lbnRfaWQiOjEzLCJjcmVhdGVkX29uIjoxNjcxMjA1MDUwLCJ
0eXBlIjoiY2FtcGFpZ24iLCJ2ZXJzaW9uIjoxLCJoYXNoIjoiY2IwNzBiYTc5MDM1MDI2
N2QxNTM5MTBhZDE1MGU1YTUiLCJzY29wZSI6IiIsImZybiI6ZmFsc2V9&isHttpsOnl
y=1

2.​ Use Action to MOVE the mouse to View Heatmap and Click on it.
3.​ Switch the Window and Switch to iframe
4.​ Click on button Click Map in the iframe of heatmap.

Solution

i

import time​
​
import pytest​
from selenium import webdriver​
from selenium.webdriver.common.by import By​
from selenium.webdriver.common.action_chains import ActionChains​
​
@pytest.fixture​
def driver():​
 driver = webdriver.Chrome()​

https://app.vwo.com/#/analyze/osa/13/heatmaps/1?token=eyJhY2NvdW50X2lkIjo2NjY0MDAsImV4cGVyaW1lbnRfaWQiOjEzLCJjcmVhdGVkX29uIjoxNjcxMjA1MDUwLCJ0eXBlIjoiY2FtcGFpZ24iLCJ2ZXJzaW9uIjoxLCJoYXNoIjoiY2IwNzBiYTc5MDM1MDI2N2QxNTM5MTBhZDE1MGU1YTUiLCJzY29wZSI6IiIsImZybiI6ZmFsc2V9&isHttpsOnly=1
https://app.vwo.com/#/analyze/osa/13/heatmaps/1?token=eyJhY2NvdW50X2lkIjo2NjY0MDAsImV4cGVyaW1lbnRfaWQiOjEzLCJjcmVhdGVkX29uIjoxNjcxMjA1MDUwLCJ0eXBlIjoiY2FtcGFpZ24iLCJ2ZXJzaW9uIjoxLCJoYXNoIjoiY2IwNzBiYTc5MDM1MDI2N2QxNTM5MTBhZDE1MGU1YTUiLCJzY29wZSI6IiIsImZybiI6ZmFsc2V9&isHttpsOnly=1
https://app.vwo.com/#/analyze/osa/13/heatmaps/1?token=eyJhY2NvdW50X2lkIjo2NjY0MDAsImV4cGVyaW1lbnRfaWQiOjEzLCJjcmVhdGVkX29uIjoxNjcxMjA1MDUwLCJ0eXBlIjoiY2FtcGFpZ24iLCJ2ZXJzaW9uIjoxLCJoYXNoIjoiY2IwNzBiYTc5MDM1MDI2N2QxNTM5MTBhZDE1MGU1YTUiLCJzY29wZSI6IiIsImZybiI6ZmFsc2V9&isHttpsOnly=1
https://app.vwo.com/#/analyze/osa/13/heatmaps/1?token=eyJhY2NvdW50X2lkIjo2NjY0MDAsImV4cGVyaW1lbnRfaWQiOjEzLCJjcmVhdGVkX29uIjoxNjcxMjA1MDUwLCJ0eXBlIjoiY2FtcGFpZ24iLCJ2ZXJzaW9uIjoxLCJoYXNoIjoiY2IwNzBiYTc5MDM1MDI2N2QxNTM5MTBhZDE1MGU1YTUiLCJzY29wZSI6IiIsImZybiI6ZmFsc2V9&isHttpsOnly=1
https://app.vwo.com/#/analyze/osa/13/heatmaps/1?token=eyJhY2NvdW50X2lkIjo2NjY0MDAsImV4cGVyaW1lbnRfaWQiOjEzLCJjcmVhdGVkX29uIjoxNjcxMjA1MDUwLCJ0eXBlIjoiY2FtcGFpZ24iLCJ2ZXJzaW9uIjoxLCJoYXNoIjoiY2IwNzBiYTc5MDM1MDI2N2QxNTM5MTBhZDE1MGU1YTUiLCJzY29wZSI6IiIsImZybiI6ZmFsc2V9&isHttpsOnly=1

 yield driver​
 # Close the web driver​
 driver.quit()​
​
@pytest.mark.usefixtures("driver")​
def test_02_windows_actions_complex(driver):​
 URL =

"https://app.vwo.com/#/analyze/osa/13/heatmaps/1?token=eyJhY2NvdW50X2lkI

jo2NjY0MDAsImV4cGVyaW1lbnRfaWQiOjEzLCJjcmVhdGVkX29uIjoxNjcxMjA1MDUwLCJ0e

XBlIjoiY2FtcGFpZ24iLCJ2ZXJzaW9uIjoxLCJoYXNoIjoiY2IwNzBiYTc5MDM1MDI2N2QxN

TM5MTBhZDE1MGU1YTUiLCJzY29wZSI6IiIsImZybiI6ZmFsc2V9&isHttpsOnly=1"​
 driver.get(URL)​
 driver.maximize_window()​
​
 mainWindowHandle = driver.current_window_handle​
​
 ac = ActionChains(driver)​
 ac.move_to_element(driver.find_element(By.CSS_SELECTOR,

"[data-qa='yedexafobi']")).click().perform()​
​
​
 time.sleep(20)​
​
​
 window_handles = driver.window_handles​
​
 # Here we will check if child window has other child windows and

will fetch the heading of the child window​
 for handle in window_handles:​
 if mainWindowHandle != handle:​
 driver.switch_to.window(handle)​
 driver.switch_to.frame("heatmap-iframe")​
 driver.find_element(By.CSS_SELECTOR,

"[data-qa='liqokuxuba']").click()​
​
​
​
if __name__ == "__main__":​
 pytest.main([__file__])

JavaScript executor -

The JavaScript Executor is a feature of the Selenium WebDriver that allows you to execute
JavaScript code within the context of the current page.
This can be useful for interacting with elements on the page that are not directly accessible
through the Selenium API, or for bypassing certain limitations of the Selenium API.

Here are some common functions that you can use with the JavaScript Executor in
Selenium:

●​ arguments[0].click(): This function clicks on the element specified as the first
argument.

●​ arguments[0].scrollIntoView(): This function scrolls the element specified as the
first argument into view.

●​ arguments[0].setAttribute(arguments[1], arguments[2]): This function sets the
attribute specified by the second argument to the value specified by the third
argument for the element specified as the first argument.

●​ arguments[0].innerHTML = arguments[1]: This function sets the inner HTML of the
element specified as the first argument to the value specified by the second
argument.

●​ return arguments[0].value: This function returns the value of the element specified
as the first argument.

●​ return arguments[0].style.display: This function returns the display style of the
element specified as the first argument.

What can you do?

●​ JavaScriptExecutor provides two methods “executescript” & “executeAsyncScript” to
handle.

●​ Executed the JavaScript using Selenium Webdriver.
●​ Illustrated how to click on an element through JavaScriptExecutor, if selenium fails to

click on element due to some issue.
●​ Generated the ‘Alert’ window using JavaScriptExecutor.
●​ Navigated to the different page using JavaScriptExecutor.
●​ Scrolled down the window using JavaScriptExecutor.
●​ Fetched URL, title, and domain name using JavaScriptExecutor.

Dynamic Elements
let’s say ‘id’ of a username field is ‘uid_123’

Class=”abc-kkj3k2jk3j2”
id=”web-2323sdsdsd”
Use any of the Techq.

●​ [contains(@id,’uid’)]”
●​ /*[starts-with(@id,’uid’)]
●​ Relative Locators
●​ Xpath Axes

●​ Custom CSS Selectors

Project CRM

1.​ Login with the Credential -
https://opensource-demo.orangehrmlive.com/web/index.php/auth/login

2.​ Add user
https://opensource-demo.orangehrmlive.com/web/index.php/admin/saveSystemUser

3.​ Search User

Selenium Exception

https://opensource-demo.orangehrmlive.com/web/index.php/admin/saveSystemUser

NoSuchElementException: This exception is thrown when the web driver is unable to
locate an element on the page using the specified search criteria.

NoSuchFrameException: This exception is thrown when the web driver is unable to switch
to a specified frame.

NoAlertPresentException: This exception is thrown when the web driver is unable to find
an alert box on the page.

ElementNotVisibleException: This exception is thrown when the web driver is unable to
interact with an element that is not visible on the page.

ElementNotInteractableException: This exception is thrown when the web driver is unable
to interact with an element that is not enabled or not displayed.

StaleElementReferenceException: This exception is thrown when the web driver is unable
to interact with an element that has been modified or removed from the DOM after it was
located.

TimeoutException: This exception is thrown when the web driver times out while waiting for
an element to be located or an action to be performed.

WebDriverException: This is a general exception that is thrown when an error occurs while
interacting with the web driver.

-​ Waits

-​ Try and Except

Misc Scenarios in Selenium

1.​ Search and Find the text in Web table with pagination.
2.​ Navigate here - https://codepen.io/templatesio/full/MWqxxog
3.​ Search “Calvin Golden” on page x.

Handling SVG & Shadow DOM

1.​ What is SVG - Scalable Vector Graphics to define graphics for web.
a.​ XML based language to create 2-D graphics/images with animation and

interactivity.
b.​ Uses geometrical figures to draw an image.

c.​ <svg> tag is used as a container for SVG graphics.

2. How to handle SVG Elements in Selenium?
3. How to create XPATH for SVG Elements in HTML DOM?

https://codepen.io/templatesio/full/MWqxxog

<svg>
<g>
<circle>
<polygon>
<path>

Your First SVG

https://www.w3schools.com/graphics/tryit.asp?filename=trysvg_myfirst

https://www.amcharts.com/svg-maps/?map=india" - Map is SVG

https://flipkart.com - Search button

SVG Automation Problem - Find the Tripura and Click on It

https://www.amcharts.com/svg-maps/?map=india" - Map is SVG

import pytest
from selenium import webdriver
from selenium.webdriver.common.by import By
from selenium.webdriver.common.keys import Keys
from selenium.webdriver.common.action_chains import ActionChains

@pytest.fixture
def driver():
 driver = webdriver.Chrome()
 yield driver
 driver.quit()

def test_svg_demo(driver):
 driver.get("https://flipkart.com")
 driver.maximize_window()
 search_input = driver.find_element(By.NAME, "q")
 search_input.send_keys("AC")

 search_element = driver.find_element(By.XPATH,
"//*[local-name()='svg']/*[local-name()='g' and @fill-rule='evenodd']")
 actions = ActionChains(driver)
 actions.move_to_element(search_element).click().perform()

 driver.get("https://www.amcharts.com/svg-maps/?map=india")

https://www.w3schools.com/graphics/tryit.asp?filename=trysvg_myfirst
https://www.amcharts.com/svg-maps/?map=india
https://flipkart.com
https://www.amcharts.com/svg-maps/?map=india

 states_list = driver.find_elements(By.XPATH,
"//*[name()='svg']/*[name()='g'][7]/*[name()='g']/*[name()='g']/*[name(
)='path']")
 for state in states_list:
 aria_label = state.get_attribute("aria-label")
 print(aria_label)
 if aria_label == "Tripura ":
 actions.move_to_element(state).click().perform()
 break

if __name__ == "__main__":
 pytest.main(["-v"])

Shadow DOM

●​ Shadow DOM is a web standard that provides encapsulation for DOM and CSS in a
web component.

●​ It allows developers to create encapsulated and reusable UI components.

●​ Elements inside a Shadow DOM are hidden from the main document's DOM, and the
styles defined within a Shadow DOM do not affect the main document's styles, and
vice versa.

<!DOCTYPE html>​
<html>​
<head>​
 <title>Shadow DOM Example</title>​
</head>​
<body>​
 <my-custom-element>​
 #shadow-root​
 <p>This is content inside Shadow DOM</p>​
 </my-custom-element>​
</body>​
</html>

ScreenShot

●​ Simple Selenium Method to take screenshot

Relative Locators in Selenium

Selenium 4 introduces Relative Locators (previously called Friendly Locators). These
locators are helpful when it is not easy to construct a locator for the desired element, but
easy to describe spatially where the element is in relation to an element that does have an
easily constructed locator.

https://www.selenium.dev/documentation/webdriver/elements/locators/

Relative Locators in Selenium 4
1. above()
2. below()
3. toLeftOf()
4. toRightOf()
5. near()

Data Driven Testing (Apache POI)
●​ Test data is stored in table or spreadsheet format.
●​ In data-driven testing, the input data and expected results are created in a table or

spreadsheet.
●​ Data generation can be done by - https://www.mockaroo.com/
●​ Run your Test cases based on Data.

Valid Email Valid Password Valid

Invalid Email Valid Password Invalid

https://www.selenium.dev/documentation/webdriver/elements/locators/
https://www.mockaroo.com/

import pytest
from selenium import webdriver
from openpyxl import load_workbook

pip install pytest openpyxl pytest-excel
def get_test_data():
 workbook = load_workbook("testdata.xlsx")
 sheet = workbook.active
 data = []
 for row in sheet.iter_rows(min_row=2, values_only=True): #
Start from the second row to skip headers
 data.append(row)
 return data

@pytest.fixture
def setup_teardown():
 driver = webdriver.Chrome()
 driver.get("https://app.vwo.com") # Replace with your website
URL
 driver.maximize_window()
 yield driver
 driver.quit()

@pytest.mark.parametrize("username, password", get_test_data())
def test_login(setup_teardown, username, password):
 driver = setup_teardown
 print(username, password)

 # Add your assertions or validation steps here
 # For example, assert that a successful login redirects to the
dashboard page

 # Wait for a brief moment to see the action

 driver.implicitly_wait(5)

Page Object Model
What is a Page Object Model in Selenium?

is a design pattern in Selenium that creates an object repository for storing all web elements.
It helps reduce code duplication and improves test case maintenance.

https://www.selenium.dev/documentation/test_practices/encouraged/page_object_models/

●​ Page Object Model in Selenium WebDriver is an Object Repository design pattern.
●​ Selenium page object model creates our testing code maintainable, reusable.
●​ Page Factory is an optimized way to create an object repository in the Page Object

Model framework concept.
●​ AjaxElementLocatorFactory is a lazy load concept in Page Factory – page object

design pattern to identify WebElements only when they are used in any operation.

https://www.selenium.dev/documentation/test_practices/encouraged/page_object_models/

POM vs Page Factory

 What is the Main difference between Page Object Model and Page Factory in Seleniu…

https://www.youtube.com/watch?v=EcjDrADDEfw

Selenium Manager (Beta)

●​ Selenium Manager is a binary generated with Rust that manages driver installation.
●​ Start the grid with this additional argument: --selenium-manager true
●​ https://www.selenium.dev/documentation/selenium_manager/

Selenium Grid

●​ Want to run tests in parallel across multiple machines? Then, Grid is for you.
●​ Selenium Grid allows the execution of WebDriver scripts on remote machines by

routing commands sent by the client to remote browser instances.

Grid aims to:

●​ Provide an easy way to run tests in parallel on multiple machines
●​ Allow testing on different browser versions
●​ Enable cross platform testing
●​ Interested? Go through the following sections to understand how Grid works, and

how to set up your own.

https://www.selenium.dev/documentation/selenium_manager/

Selenium Grid architecture

Selenium Framework

Parallel Test

Reference

1.​ https://www.geeksforgeeks.org/css-selectors-complete-reference/?ref=lbp
2.​ https://google.com
3.​

Jenkins (Automation Run)

1.​ Push the code git
2.​ get the git link - public git
3.​ install jenkins
4.​ create a freestyle job - new item
5.​ SCM -> git link repo
6.​ Build
7.​ Report -> Add a plugin Allure report, HTML Report Plugin configration.

On Windows
set path="C:\Users\sikhi\AppData\Local\Programs\Python\Python312"
set path="C:\Users\sikhi\AppData\Local\Programs\Python\Python312\Scripts"
pip install -r requirements.txt
pytest tests\integration_test\test_crud.py

https://www.geeksforgeeks.org/css-selectors-complete-reference/?ref=lbp
https://google.com

On Mac
cd "/Users/pramod/.jenkins/workspace/Python 1x Automation"
pip3 install -r requirements.txt
/Library/Frameworks/Python.framework/Versions/3.9/bin/pytest
tests/integration_test/test_crud.py -s -v --html=report.html --alluredir=./reports

By using Virtual Env

/opt/homebrew/bin/python3 -m venv .
source ./bin/activate
pip install allure-pytest selenium pytest selenium-page-factory pytest-html openpyxl
pyyaml faker openpyxl pytest-xdist python-dotenv
pytest tests/test/vwoLoginTests/test_vwo_login_pf.py
deactivate

AWS Basics and Running Selenium Grid

●​ We will be using AWS for the Jenkins or Selenium Grid Install.
●​

1.​ Create a Free tier account https://aws.amazon.com/free/
2.​ You will be logged in to the AWS Account

https://aws.amazon.com/free/

Install Jenkins in AWS

Step - 1 Install Java

Update your system

sudo apt update
Install java
sudo apt install openjdk-11-jre -y
Validate Installation

java -version
It should look something like this

openjdk version "11.0.12" 2021-07-20 OpenJDK Runtime Environment (build
11.0.12+7-post-Debian-2) OpenJDK 64-Bit Server VM (build 11.0.12+7-post-Debian-2,
mixed mode, sharing)
Step - 2 Install Jenkins

Just copy these commands and paste them onto your terminal.

curl -fsSL https://pkg.jenkins.io/debian/jenkins.io.key | sudo tee \
/usr/share/keyrings/jenkins-keyring.asc > /dev/null
echo deb [signed-by=/usr/share/keyrings/jenkins-keyring.asc] \ https://pkg.jenkins.io/debian
binary/ | sudo tee \ /etc/apt/sources.list.d/jenkins.list > /dev/null
sudo apt-get update
sudo apt-get install jenkins

Step -3 Start jenkins

sudo systemctl enable jenkins
sudo systemctl start jenkins
sudo systemctl status jenkins
Step - 4 Open port 8080 from AWS Console:

Edit for Port - /etc/default/jenkins

How to find Java Location?

​​
readlink -f $(which java)

Running Selenium Test cases on Selenium Grid

1.​ Install Selenoid
2.​ Install Docker

Sudo su // FOR SU user
Apt-get update
apt install docker.io -y
sudo systemctl status docker
sudo systemctl start docker

sudo wget "https://github.com/aerokube/cm/releases/download/1.8.1/cm_linux_amd64"

sudo chmod +x cm_linux_amd64
sudo ./cm_linux_amd64 selenoid start –vnc

./cm_linux_amd64 selenoid-ui start
./cm_linux_amd64 selenoid-ui stop

https://github.com/aerokube/cm/releases/download/1.8.1/cm_linux_amd64

	Web Automation Selenium 4.x​Notes - TheTestingAcademy (Pramod Sir)
	📗 Mastering Web Automation with Selenium
	​​What is Selenium?
	Selenium vs Playwright vs Cypress
	
	Don’t use Selenium here
	
	WebDriver Architecture
	Install Browser Drivers
	Quick Reference

	Selenium IDE
	Selenium Grid (3,4.x)
	When to use Selenium Grid
	How to Start Selenium Grid
	
	Selenium Grid 4
	Different Grid Types
	Run Grid 4

	
	Run Selenium on Docker
	Run on Cloud Service Providers - BrowserStack

	
	
	
	
	
	
	Understanding Selenium API

	
	
	
	Virtual Env
	Logging with Pytest
	
	
	
	Webdriver Hierarchy
	
	
	
	ChromeDriver
	
	

	ChromeOptions
	pageLoadStrategy
	Proxy
	Remote WebDriver

	Difference Between Quit and Close in Selenium
	🧭Navigation in Selenium
	Navigation commands in Selenium

	🔎 Locators in Selenium
	
	[Assignment] - Automating the Login Page of VWO.com
	Understanding Locators and HTML Forms
	findElement vs findElements
	What is an HTML Form?
	text Method
	getAttribute() Method
	sendKeys
	click()

	⚒️ SelectorsHub for the Locators
	[Assignment] - Invalid error message Capture for the Login Page of VWO.com
	Link Text locator.

	🛣️ Mastering XPath
	Why do we need to MASTER Locators?
	Absolute XPath
	Relative Xpath
	XPath Functions
	Operators - AND & OR

	XPath Axes
	​
	
	
	
	
	
	

	⚠️ Master CSS Selectors
	
	
	​​​⌛Selenium Waits
	Implicit Wait
	Explicit Wait
	
	[Assignment] Fix the VWO login page with the heading page visibility, Use Expected Condition
	Fluent Wait

	Select Demo, Static and Dynamic Dropdowns
	Alert in Selenium
	Handling Checkboxes and Handling Radio Buttons
	
	
	Web Table in Selenium
	
	​Actions, Windows and iframe.
	
	JavaScript executor -
	
	Dynamic Elements
	
	
	
	
	
	
	
	Selenium Exception
	
	Handling SVG & Shadow DOM
	
	
	SVG Automation Problem - Find the Tripura and Click on It

	Relative Locators in Selenium
	Data Driven Testing (Apache POI)
	
	Page Object Model
	POM vs Page Factory

	Jenkins (Automation Run)
	
	
	AWS Basics and Running Selenium Grid

